Читать книгу Raumfahrt - wohin und wozu - Thomas Ahrendt - Страница 4

Raumfahrt & die irdische Energiekrise

Оглавление

Raumfahrt hat das Potenzial, die irdische Energiekrise zu entschärfen oder sogar gänzlich zu lösen, etwa mittels Lichtspiegeltechnik (LST), also das Sonnenlicht umlenkende Spiegel, und Energiesatelliten, eventuell in Verbindung mit der Wasserstofftechnik und Brennstoffzellen und mit Zimmertemperatur-Supraleitern. Umlenkspiegel würden den diversen irdischen Solarenergieanlagen (Sonnenkollektoren, Solarzellen) dann zusätzliches Sonnenlicht vor allem über einen längeren Zeitraum zustrahlen und so deren Effektivität steigern. Mit derart verstromter Sonnenenergie ließe sich Wasser durch Elektrolyse aufspalten, der Wasserstoff transportieren und in den Brennstoffzellen wieder verstromen. Weltraumgestützte Solar-Energiesatelliten würden den irdischen Empfangsantennen dementsprechend Mikrowellen oder Laserstrahlen zustrahlen, die dann verstromt werden. Mit der so gewonnenen elektrischen Energie ließen sich wiederum Wasser elektrolytisch in Wasserstoff und Sauerstoff aufspalten, somit die Sonnenenergie speichern und über Brennstoffzellen wieder verstromen. Zimmertemperatur-Supraleiter ermöglichen den verlustlosen Stromtransport, ohne - wie der Name schon sagt - Kühlung, da die "Sprungtemperatur" bei Zimmertemperatur liegt, also um rund 20°C. (Wobei im Weltraum selbst keine Kühlung notwendig ist. Auf der Nachtseite des Mondes z.B. liegen die Temperaturen bei -130°C, nach anderen Quellen sogar bei -173°C.)

Vielleicht erfolgt die globale Elektrizitätsversorgung ausschließlich mit irdischen Solar-Kraftwerken? Die Sonne strahlt gut 8000 mal so viel Energie auf die Erde, wie wir sie zur Zeit verbrauchen; 7 große solarthermische Kraftwerke am Äquator (siehe "Desertec") könnten 23.000 Terawattstunden auf 4,7% der Wüstenflächen oder fast 0,05% der gesamten irdischen Landmasse erzeugen. Ein 82.000 km langes Gleichstrom-Hochspannungsnetz würde den Strom für 0,29 US-Dollar (2007) pro kWh zu den Verbrauchen liefern.

Als eine Alternative zu irdischen Sonnenkraftwerken bieten sich satellitengestützte Sonnenkraftwerke an. Auf der Erde nehmen Sonnenkraftwerke viel Platz ein, da die Sonnenenergie nicht sehr konzentriert ist; im Weltraum dagegen sind Kollektoren niemandem im Weg. Ein weiterer Vorteil ist der, dass sie nachts nicht abgeschaltet werden müssen und die Sonnenstrahlung in voller Stärke und in einem breiten Bereich des elektromagnetischen Spektrums genutzt werden kann. Im Weltraum bringt das Solar-Kraftwerk ca. die 5fache Leistung und, falls es schattenfrei bleibt, ein fast konstantes Energieangebot. Sind die Fragen des Transports, der Montage und seiner Wartung wie die der Energielieferung zur Erde geklärt, steht seiner Verwirklichung nichts mehr im Wege. Entweder verwendet das Kraftwerk Spiegel-Verdampfer- und Turbinen-Generator-Systeme oder Fotozellen. Teilweise wird er im Erdschatten, auch im Mondschatten liegen, die zu Abkühlungen und damit auch zu gewissen Strukturproblemen führen könnten. Durch die Schwerelosigkeit wird die Trägerstruktur nicht belastet - außer durch die Eigenmasse, die aber vernachlässigbar klein ist und somit nicht zusammenbrechen kann.

Solarpaneele oder auch "Solar Power Satellites" - SPS (Solarkraft-Satelliten) im geostationären Orbit (GSO) wandeln Sonnenlicht mittels Fotovoltaik in Elektrizität um und strahlen diese über Mikrowellen zur Erde. Da der Umwandlungsgrad von Mikrowellen in Strom bei 80% liegt, wird pro Flächeneinheit 2 bis 4mal mehr Energie "erzeugt" als bei der Umwandlung von Tageslicht in Strom, wobei die Atmosphäre etwas Energie absorbiert und in Wärme umsetzt. Die Mikrowellen sind schon in der Atmosphäre soweit divergiert, dass eine Brand-beziehungsweise Verletzungsgefahr ausgeschlossen ist. Weiterhin lässt ein Sicherheitssystem den Strahl zerstreuen, falls er nicht mehr auf die Antenne ausgerichtet ist. Erfolgt die drahtlose Energieübertragung mit Laser statt mit Mikrowellen, ist die Bündelung noch besser und die Anlage wird leichter und damit billiger. Die die ins All zu transportierende Masse verringert sich erheblich, da die Antennen 50mal kleiner werden, jedoch sinkt der Wirkungsgrad bei der Umwandlung. Die Energieübertragung per Mikrowellen ist Lasern überlegen, da große Verluste bei der Umwandlung von elektrischer Energie in Laserenergie auftreten und Laserstrahlen wetterabhängig sind.

Um auf der Erde Strom im Gigawatt-Bereich zu erhalten, werden derartige orbitale Strukturen über 10 km² groß sein. Außerdem umfassen sie Systeme zur verlustarmen oder -freien Umwandlung der erzeugten Gigawatt-Leistung (elektrisch) und eine gut 1 km große Mikrowellenantenne mit einigen 105phasenkorrellierten Magnetrons. Die "Rectenna", die Empfangsantenne auf der Erde, wird mit vielen Dipolen bestückt sein und gut 100 km² groß sein; die Strahlungsenergiedichte wird aus Sicherheits- und Gesundheitsgründen maximal 200 W/m² betragen. Gegebenenfalls ließe sich das Land unter der Empfangsantennenfarm landwirtschaftlich nutzen. Auch wenn Energiesatelliten nicht viel wirtschaftlicher als Schnelle Brüter sein sollten, wären sie doch sicherer als diese und in Zeiten der vor allem deutschen Anti-Kernkraftstimmung (Hauptsache Strom kommt aus der Steckdose) sollten sie auf jeden Fall eine Alternative sein - die Kosten wären durch einen Ölkrieg weniger schnell rausgeholt. 10 Energiesatelliten liefern bei je 30jähriger Arbeitszeit 10 bis 32mal mehr Energie, als zu ihrer Entwicklung und zu ihrem Betrieb nötig sind. Statt die Einzelteile mit Raketen hochzuschießen, könnte man sie auch mit einem Lift oder mit einem rotierenden Seil hochbefördern... Es wird sowieso längst Zeit, eine Alternative zur Rakete zu entwickeln. Weltraumspiegel beziehungsweise Umlenkspiegel wie "Soletta" oder "Lunetta" könnten große irdische Kraftwerke in abgelegenen Gegenden, wo Umweltbelastung unkritisch ist, mit Energie versorgen, die den Strom ihrerseits ohne hohe Verluste über transkontinentale Entfernungen hinweg eventuell drahtlos über Mikrowellen oder über Supraleiter transferieren. Deren Kosten wären vergleichbar mit denen von Solar-Kraftwerken. Man könnte einen Sonnenenergiesatelliten auch auf eine polnahe, ewige Sonnenbahn bringen, bräuchte dann aber einen oder mehrere geostationäre Energiereflektoren. Soletta wäre ein glatter optischer Spiegel auf geostationärer Bahn, der Sonnenschein immer an die gleiche Stelle auf der Erde reflektiert, an der ein dauernd arbeitsfähiges Solar-Kraftwerk gebaut wird. Der von Soletta erzeugte minimale Lichtfleck hat 320 km Durchmesser. Lunetta ließe sich einsetzen, um Städte, Schifffahrtswege usw. in der Nacht zu beleuchten. Es wäre ein nur 500 m x 300 m großer Lichtspiegel in geostationärer Bahn; sein 320 km großer Lichtfleck würde auf der Erde Vollmondbedingungen schaffen. Soletta und Lunetta wurden von Hermann Julius Oberth (* 25. Juni 1894 † 28. Dezember 1989) erdacht und von Krafft Arnold Ehricke (* 24. März 1917 † 11. Dezember 1984) verbessert. Das "Solar Tower"-Konzept sieht zum Beispiel einen zentralen 15 km langen Mast vor, an dem 120 quadratische Solarsegel mit je 150 m Kantenlänge paarweise befestigt sind; jedes Paar erzeugt 7,4 MW Strom, den ein supraleitendes Kabel im Zentralmast zur Mikrowellenantenne leitet. Die 1 km große Antenne besteht aus 400.000 Magnetrons von etwa 1 kW Leistung; damit sie sich nicht gegenseitig neutralisieren, müssen sie in Phase schwingen. 450 MW elektrischer Strom könnten damit produziert werden, von denen nach Umwandlungsverlusten noch 275 MW genutzt werden können. Mit 1870 solcher Kraftwerk-Satelliten und 103 Empfangsstationen ließe sich der auf 515 GW geschätzte Strombedarf Europas 2020 komplett aus dem All decken. Wenn der Weltraumfahrstuhl gebaut wird, wird nicht nur der Bau der Energiesatelliten viel billiger, sondern er kann die Satellitenenergie in Hohl- oder Supraleitern zur Erde bringen; mit ihr ließen sich auch die Fahrstühle antreiben. Hat die Weltraumindustrialisierung dereinst große Dimensionen erreicht, könnte deren Anlagen und Maschinen die Energie von Solarenergiesatelliten geliefert werden; die Erde wäre von den Zuleitungsproblemen entlastet. Raumschiffe und vielleicht hochfliegende Flugzeuge könnten ihre Energie zukünftig von Satelliten-Kraftwerken eventuell per Laser beziehen und würden dadurch einfacher, billiger und leistungsfähiger. Durch modulare Bauweise können die Einzelkomponenten in kostengünstiger Massenproduktion hergestellt werden, außerdem können die Module schon während ihrer Montage, die größtenteils durch Roboter erfolgt, Energie liefern und sich bezahlt machen. Fallen die Transportkosten der Bauteile usw. in den GSO von zur Zeit 40.000 US-Dollar (2007) pro kg auf 500 US-Dollar pro kg, wären weltraumgestützte Sonnenkraftwerke konkurrenzfähig. Fotozellen könnten in Massenproduktion viel billiger werden, Entwicklungskosten fallen beim 2. Energiesatelliten nicht mehr an und auch dessen Fertigungszeit ist kürzer und damit billiger. Werden sie durch Roboter hergestellt und (teilweise?) durch Robonauten im All montiert - also durch Menschen und Teleroboter, könnten sie ebenfalls billiger werden. Um ihren Bau noch einfacher und damit billiger zu machen, könnten "Trägererzeuger" verwendet werden, die Metall- oder Verbundwerkstoffschienen für die Gitterstrukturen aus dem einfacher zu transportierendem Rohmaterial direkt im Weltraum herstellen. Sollten Entwicklung, Bau, Transport und Betrieb der Solarenergiesatelliten unter 1000 Euro pro kg fallen, was mit Robotern und erst recht mit Nanotechnologie und dem Weltraumlift machbar sein sollte, würden sie konkurrenzfähig zu irdischen Energieträgern, da diese jedoch zukünftig immer knapper werden, könnten Solarenergiesatelliten schon früher relevant werden und auch mit regenerativen Energieträgern mithalten oder diese überholen, denn Wind und Wasser sind schwach konzentriert, entsprechende Kollektoren müssen zahlreich über eine große Fläche verteilt sein. Also bleiben für die nächsten Jahrzehnte Kohle, Öl und Atom, bald darauf submarines Methanhydrat usw. Allerdings bleibt es wünschenswert, könnte diese Übergangsfrist verringert werden - durch Forschung, neue Technologien usw. Nun sieht die Sache noch besser aus, wenn Solarenergiesatelliten auf dem Mond oder auf ENAs, auf erdnahen Asteroiden statt auf der Erde hergestellt werden und von dort in den GSO, in den Geostationären Orbit in 36.000 km Höhe über dem Erdäquator gebracht werden. Oder aber die Anlagen verbleiben auf Mond und/oder den ENAs und nur die Energie wird von dort zur Erde gestrahlt. Wenn sich erst mal die Kosten stark verringert haben - etwa durch einen Himmelsaufzug - wird sich auch der Weltraumtourismus etablieren, zunächst im erdnahen Weltraum und später dann im geolunaren Raum und auf anderen Welten des Sonnensystems. Parallel zum Weltraumtourismus wird der Weltraum aber auch im Zuge seiner Industrialisierung zum Arbeitsplatz; dabei werden sich Computer, Roboter und Menschen sinnvoll, beinahe symbiotisch ergänzen, wie etwa beim Bau von Weltraum-Solar-Kraftwerken, Raumbasen, lunaren und planetaren Stationen und zukünftigen Weltraumkolonien... Es wurde auch vorgeschlagen, dass Solarsatelliten im Erdorbit unnötig seien; stattdessen sollte die Sonnenenergie direkt von lunaren Solarrezeptoren auf der Mondoberfläche aufgefangen, umgewandelt und über Mikrowellen zur Erde gestrahlt werden. Die Zukunft wird zeigen, ob Weltraum-Kraftwerke und/oder Kernenergie in Form von schnellen Brütern und Fusionsreaktoren für die Erd-Energieversorgung gebraucht werden. Umweltschonender und politisch leichter zu realisieren wäre es, wenn zum Beispiel lunare Rohstoffe verbraucht werden, deren Herstellung und Betrieb sicherer sind und dadurch irdische Rohstoffe gespart werden und die Umwelt geschont und nicht verunstaltet wird. Allgemein setzen jedoch hochtechnologische Zukunftsentwürfe eine weit friedlichere und kooperationswilligere Welt voraus, als sie es gegenwärtig ist . Statt oder zusätzlich zur Sonnenenergie könnte man auch von einer anderen Primärenergie (Kernenergie, Antimaterieenergie) ausgehen. Man müsste dann aber diese Anlage erst ins All verlegen, könnte aber etwa im Fall nuklearer Primärenergie die irdische Bedrohung beseitigen. Mit der Nutzung der solaren Strahlungsenergie im erdnahen Weltraum mittels SSPS (Solar Satellit Power Station), der Zuführung zusätzlichen Sonnenlichts mit Weltraumspiegeln und Speicherung der Sonnenenergie in Form von Antimaterie ließe sich das gigantische Energiefass Sonne noch von anderen Stellen anzapfen als nur vom Erdboden aus. Was die Antimaterie angeht, wäre Merkur ein vorzüglicher Ort für Antimateriefabriken da dieser atmosphärelose Planet nur 0,3 AE von der Sonne entfernt ist und seine Solarkonstante mit 9123 W/m2 gut 6,7mal höher als die der Erde ist. Intelligente Automaten, sogenannte Von-Neumann-Sonden (VNS), die sich reproduzieren und komplexe technische Aufgaben erledigen können, würden dort großflächige Solarfarmen oder kombinierte Energiewandlersysteme errichten, aus deren Elektroenergie die Antimaterie erzeugt werden würde. Menschen würden diese Anlagen wahrscheinlich auf telematischem Wege kontrollieren und überwachen. Um die Antimaterie vor normaler Materie zu schützen, würde der schließlich in Eisform erhaltene Antiwasserstoff in Magnetfelder gepackt und zum Beispiel in den Erde-Mond-Librationspunkten (EMLs) 4 und 5 gelagert. Antimaterie ließe sich vielfältig nutzen, etwa als Treibstoff für Photonenraketen, für die Erschaffung von Kunstsonnen und überhaupt zur Energiespeicherung. Kunstsonnen im GSO oder im geolunaren Raum wären neben der LST (Lichtspiegeltechnik) selbstverständlich eine weitere Möglichkeit, um Eiszeiten zu verhindern. Auch wenn die Sonne zum Weißen Zwerg geworden ist, muss das Leben auf der Erde nicht aussterben, denn durch die Herstellung künstlicher Sonnen wird eine energieautarke Umwelt möglich. Die Leuchtstärke der Kunstsonnen, also deren Intensität der Energiefreisetzung ließe sich über den Materiebeschuss regeln. Als weitere Möglichkeit verbleibt die Umsiedlung zu anderen Sternen und deren erdartigen Exoplaneten, Monden usw. die sich gegebenenfalls terraformen ließen. Kunstsonnen und interstellare Raumfahrt werden in spätestens in einigen Megajahren, wenn nicht schon viel früher, wie es die technologische Singularität postuliert, möglich werden, da keine Naturgesetze dagegen sprechen. Für beides ist die Erschaffung von Antimaterie Hauptvoraussetzung, denn nur sie hat die maximale Energiedichte wie sie Kunstsonnen und Raumantriebe brauchen. Weiterhin ergibt sich mit ihrer Synthese die Möglichkeit, verlorengehende Sonnenenergie teilweise zu speichern - für schwere Zeiten. Falls unsere Nachfahren ab dem Jahr 999.999 damit beginnen, bis zum 5. Gigajahr auch nur den 10-15 Teil der solaren Strahlungsenergie als Antimaterie zu speichern, könnten Antimaterie-Kunstsonnen 170 Kilojahre lang strahlen, wenn sie sich in EML4 und 5 befinden, und 17 Megajahre, wenn sie im GSO "stehen". Wird die Auffangfläche auf Merkur vergrößert und werden weitere sonnennahe und damit energiedichte Standorte genutzt, ließe sich diese Überlebenszeit um kosmische Epochen verlängern. Mit ausreichend sicheren Raketen scheint weiterhin die Beseitigung hochradioaktiver Abfälle in eine hohe Erdumlaufbahn, in die Sonne oder aus dem Sonnensystem hinaus wirtschaftlich attraktiv zu sein. Durch die hohe Flugrate, mindestens einmal pro Tag, wird die Wirtschaftlichkeit enorm erhöht und rechtfertigt sogar die Entwicklung von Spezialraketen. Die Entsorgung hochradioaktiven Mülls, 2 Kubikmeter und 3 Tonnen pro Jahr, könnte durch ein Raumfahrzeug erfolgen, dass von einem Raumtransporter in eine niedrige Erdumlaufbahn gebracht wird. Die hochradioaktiven Abfälle heizen Wasserstoff auf, der durch Raketendüsen ausströmt - wie bei einem nuklearthemischen Triebwerk. Während es von der Erde wegspiralt, hat es nach einem Jahr Fluchtgeschwindigkeit erreicht. Nach dem der Wasserstoff verbraucht und alle überflüssige Masse abgeworfen ist, entfaltet sich ein Sonnensegel und der Flugkörper spiralt mitsamt der radioaktiven Abfälle in die Sonne. (Als Nebeneffekt würde die Sonne ein abnormes Spektrum bekommen, wodurch ETIsse auf uns aufmerksam werden könnten, damit hätten wir 2 Fliegen mit einer Klappe geschlagen: Entsorgung und SETI ). Selbst wenn der gesamte Weltenergiebedarf von 500 Billionen kWh (thermisch) pro Jahr im Jahr 2070 völlig durch Fissionsreaktoren gedeckt werden würde - tatsächlich vielleicht zu 50%, weitere 33% durch Energiesatelliten und der Rest durch Methanhydrat und regenerative Energien - ließe sich das mit 2 Flügen pro Tag erledigen, wenn der Transporter 500 t befördert. Sollte man sich dazu entschließen, die Abfälle in einem großen mittelorbitalen Depot zu lagern (1500 – 2500 km, äquatornahe Kreisbahn; eine noch höhere Bahn würde die Flugkosten schnell erhöhen), wäre es permanent zugänglich, falls man es doch noch mal bräuchte, etwa zur Energieversorgung einer Raumstation oder Mondbasis usw.

Raumfahrt - wohin und wozu

Подняться наверх