Читать книгу Raumfahrt - wohin und wozu - Thomas Ahrendt - Страница 9

Venusterraforming

Оглавление

Eine Besiedlung von Venus oder Merkur stellt wegen deren größerer Sonnennähe höhere technische Ansprüche. Doch eventuell gibt es in einigen Merkurkratern kometares Eis, oder auch Helium-3? Außerdem hat Merkur einen riesigen Eisenkern - Rohstoffe und Energie (Sonne und eben Helium-3) in Hülle und Fülle! Merkur wäre durch seine Sonnennähe ein geeigneter Kandidat für die Herstellung von Antimaterie und auch ideal für ein Sonnenobservatorium, das vor Flares, Protuberanzen usw. warnt. Vielleicht werden unsere Nachfahren Merkur und Venus mithilfe hochentwickelter Robotertechnik und Telepräsenz erforschen.

Das Hauptproblem bei der Besiedlung der Venus ist ihr riesiger Treibhauseffekt; könnte man ihn ausschalten, würde ihr Klima erträglich werden. Die Wärme des Gesteinsmantels ist ein weiteres Problem; auch falls die Atmosphäre nach einigen Jahrhunderten Temperaturen hat, die für Menschen erträglich ist, sind die Gesteine noch immer gut 400º C heiß und deren Auskühlen könnte weitere Jahrhunderte beanspruchen. Venussiedler müssten sich wohl einen künstlichen Boden erschaffen...


Mikroorganismen

Um den zweiten Planeten erdähnlich zu machen, müssten etwa 1000 Raketenladungen blaugrüner Algen und andere künstlich erzeugte oder transgene Mikroorganismen in die oberen Wolkenschichten ihrer Atmosphäre gebracht werden, die den Sauerstoff vom Kohlendioxid abspalten und Kohlendioxid, Stickstoff und Wasser in organische Moleküle umwandeln bevor sie auf die Oberfläche fallen und verbrennen. Würde man die Mikroorganismen stattdessen in Weltraumhabitaten oder Ballonstädten züchten, entfielen die zahlreichen Raketenstarts.

Wenn transgene, hybride Algen und andere extremophile Mikroorganismen zahlreich und großflächig verteilt werden würden, könnte eine sauerstoffreiche Venusatmosphäre schon nach einigen Jahrhunderten und nicht erst in vielen hundert Kilojahren entstehen. Je weniger Kohlendioxid vorhanden ist, desto geringer ist der Treibhauseffekt und die Mikroorganismen können dann auf die Venusoberfläche gelangen, so dass der Wasserdampf wieder in die Atmosphäre aufsteigen kann. Der Kohlenstoff aus dem Kohlendioxid wird durch die hohen Temperaturen in Graphit umgesetzt. Sinken die Temperaturen unter den Siedepunkt von Wasser, wird ihre Oberfläche bewohnbar. Allerdings lässt sie sich wegen der Schwefelsäurewolken und dem hohen Druck nicht mit bestimmten Photosynthese-Organismen impfen, weshalb sich eine mehrere 100 m hohe Graphitschicht und eine Atmosphäre aus fast reinem molekularem Sauerstoff mit 65 bar Druck hätte bilden können. Doch bevor sich so viel Sauerstoff bilden kann, verbrennt der Graphit zu Kohlendioxid und kehrt diesen Prozess wieder um.


Impakte

Mit Impakten von Kometen oder Fragmenten des Saturnmonds Enceladus ließen sich 100 Liter Wasser pro m² auf die Venus bringen. Jedoch würde jede Kollision einen Teil ihrer Atmosphäre wegsprengen; um jedoch fast die ganze Lufthülle zu entfernen, wären mehr große Planetoiden und Kometen erforderlich, als es gibt - jedenfalls im planetaren Bereich des Sonnensystems. Ansonsten müsste man sich Kometen aus der Oortschen Wolke holen. Aber selbst wenn man genügend "Geschosse" hätte, würde man dadurch einen Großteil ihrer Oberfläche zerstören; es wäre schöner, eine Methode zu finden, die die jeweiligen Umweltbedingungen respektiert.

Vielleicht ist die Mikroorganismen-Methode nur ein Baustein im Venus-Terraforming; vielleicht müsste man erst einen dunklen Planetoiden zu Staub zermahlen und in der Hochatmosphäre ausstreuen oder Venusstaub in die Atmosphäre befördern. Das entspräche dem physikalischen Äquivalent einer nuklearen Eiszeit. Wird das Sonnenlicht ausreichend abgeschwächt, sinken zwar die Oberflächentemperaturen, aber der hohe Luftdruck bleibt. Außerdem sinkt der Staub nach wenigen Jahren auf die Oberfläche und müsste daher regelmäßig ersetzt werden, was aber für die Errichtung dauerhafter Kolonien unpraktisch werden könnte.


Solarschilde

Anstelle von Impakten könnte man mit Solarschilden in den Sonne-Venus-Wärmehaushalt eingreifen, indem man einen riesigen Sonnenschirm in ihre Umlaufbahn bringt und dadurch ihre Oberfläche abkühlt - von gegenwärtig etwa 470º C und 90 bar auf 374º C; bei dieser Temperatur würde Wasser unter dem hohen Druck flüssig werden und ausregnen und einen großen Abkühleffekt erzeugen. Damit entfiele der Treibhauseffekt des Wasserdampfs, der etwa 20mal effektiver als Kohlendioxid ist. Flüssiges Wasser reflektiert außerdem Wärme ins All. Bei 31°C und 73,8 bar Luftdruck wird Kohlendioxid flüssig, bei -56°C und 5,185 bar wird es fest und scheidet sich als Trockeneis ab. Es könnte dann zum Beispiel auf den Mars gebracht werden, um dort den Terraformingprozess zu unterstützen.

Gelingt es, ihre Oberflächentemperatur unter den Siedepunkt von Kohlendioxid zu bringen, würde es abregnen und für eine gewisse Zeit gäbe es Kohlendioxid-Ozeane. Könnte man diese mit Wasserozeanen abdecken, wobei das Wasser durch Schmelzen eines Eismondes aus dem äußeren Sonnensystem gewonnen werden könnte, wäre es wohl sicher verstaut und die Venus würde sich in einen Wasserplaneten verwandeln; es könnte bis zu 90% ihrer Oberfläche bedecken.


Ballonstädte

Im Zusammenhang mit einer Kolonisierung ist auch der Bau schwebender luftschiffähnlicher Stationen in ihrer Hochatmosphäre denkbar, in denen unter anderem schwebende ballonähnliche Pflanzen als Nahrungsmittel gezüchtet werden und die die Schwefelsäure und das Kohlendioxid abbauen. Da in der Hochatmosphäre Druck und Temperatur gemäßigt sind, könnte es dort günstige Bedingungen für "Luftplankton" geben. Dieses könnte man durch genetische Manipulation an die Oberflächenbedingungen (90 bar, 500°C) anpassen und zum biochemischen Terraforming verwenden, statt Algen u.a. Extremophile von der Erde transportieren zu müssen. Säure- und Hitzebeständige Luftschiffe könnten die Atmosphäre durch Elektrolyse und Photolyse umwandeln, und aus ihr über ein System aus Wärmetauschern und Radiatoren Energie gewinnen, sowie es bei Meereskraftwerken gedacht ist, die aus der Wärmedifferenz zwischen Oberflächen- und Tiefenwasser Energie gewinnen sollen. Verbindet man die Ballonstädte mit Solarschilden, erzeugen diese einen abkühlenden Schatten. Die Schilde ließen sich ihrerseits aus atmosphärischem Kohlenstoff, der aus dem Kohlendioxid gewonnen wird, herstellen. Dann ließe sich eine direkte Kolonisation, ein Paraterraforming schon in den nächsten Jahrzehnten durchführen und könnte nahtlos in ein vollständiges Terraforming übergehen.

Es werden wohl mehrere Methoden und parallellaufende Prozesse sein, die zum Erfolg führen werden. Nanotechnologie wird ein entscheidender Faktor sein, denn mit dieser Technologie lässt sich das Terraforming in einem viel günstigeren finanziellen und zeitlichen Rahmen durchführen. Außerdem wird der ganze Kohlenstoff aus dem atmosphärischen Kohlendioxid ein wirklich großer Rohstoffvorrat für die Materiekompilatoren werden...

In einiger Zukunft wäre es möglich, dass die Venus wie die Erde über Weltraumaufzüge, Energiesatelliten usw. verfügt.


Raumfahrt - wohin und wozu

Подняться наверх