Читать книгу The Rheology Handbook - Thomas Mezger - Страница 13
a) Definition of the shear rate using differential variables
ОглавлениеEquation 2.3
γ ̇ = dv/dh
flowing layers, and the “infinitely” (differentially) small thickness dh of a single flowing layer (see Figure 2.2).
Table 2.1: Typical shear rates of technical processes | ||
Process | Shear rates γ ̇ (s-1) | Practical examples |
physical aging, long-term creep within days and up to several years | 10-8 ... 10-5 | solid polymers, asphalt |
cold flow | 10-8 ... 0.01 | rubber mixtures, elastomers |
sedimentation of particles | ≤ 0.001 ... 0.01 | emulsion paints, ceramic suspensions, fruit juices |
surface leveling of coatings | 0.01 ... 0.1 | coatings, paints, printing inks |
sagging of coatings, dripping, flow under gravity | 0.01 ... 1 | emulsion paints, plasters, chocolate melt (couverture) |
self-leveling at low-shear conditions in the range of the zero-shear viscosity | ≤ 0.1 | silicones (PDMS) |
mouth sensation | 1 ... 10 | food |
dip coating | 1 ... 100 | dip coatings, candy masses |
applicator roller, at the coating head | 1 ... 100 | paper coatings |
thermoforming | 1 ... 100 | polymers |
mixing, kneading | 1 ... 100 | rubbers, elastomers |
chewing, swallowing | 10 ... 100 | jelly babies, yogurt, cheese |
spreading | 10 ... 1000 | butter, spreadcheese |
extrusion | 10 ... 1000 | polymer melts, dough,ceramic pastes, tooth paste |
pipe flow, capillary flow | 10 ... 104 | crude oils, paints, juices, blood |
mixing, stirring | 10 ... 104 | emulsions, plastisols,polymer blends |
injection molding | 100 ... 104 | polymer melts, ceramic suspensions |
coating, painting, brushing, rolling, blade coating (manually) | 100 ... 104 | brush coatings, emulsion paints, wall paper paste, plasters |
spraying | 1000 ... 104 | spray coatings, fuels, nose spray aerosols, adhesives |
impact-like loading | 1000 ... 105 | solid polymers |
milling pigments in fluid bases | 1000 ... 105 | pigment pastes for paints and printing inks |
rubbing | 1000 ... 105 | skin creams, lotions, ointments |
spinning process | 1000 ... 105 | polymer melts, polymer fibers |
blade coating (by machine), high-speed coating | 1000 ... 107 | paper coatings, adhesive dispersions |
lubrication of engine parts | 1000 ... 107 | mineral oils, lubricating greases |
There is a linear velocity distribution between the plates, since the velocity v decreases linearly in the shear gap. Thus, for laminar and ideal-viscous flow, the velocity difference between all neighboring layers are showing the same value: dv = const. All the layers are assumed to have the same thickness: dh = const. Therefore, the shear rate is showing a constant value everywhere between the plates of the Two-Plates model since
γ ̇ = dv/dh = const/const = const (see Figure 2.3).
Figure 2.3: Velocity distribution and shear rate in the shear gap of the Two-Plates model
Both γ ̇ and v provide information about the velocity of a flowing fluid. The advantage of selecting the shear rate is that it shows a constant value throughout the whole shear gap. Therefore, the shear rate is independent of the position of any flowing layer in the shear gap. Of course, this applies only if the shear conditions are met as mentioned in the beginning of Chapter 2.2. However, this does not apply to the velocity v which decreases from the maximum value vmax on the upper, movable plate to the minimum value vmin = 0 on the lower, immovable plate. Therefore, when testing pure liquids, sometimes as a synonym for shear rate the term velocity gradient is used (e. g. in ASTM D4092).