Читать книгу Предсказываем тренды. С Rattle и R в мир моделей классификации - Александр Фоменко - Страница 22

Часть 1. Введение в предсказательное моделирование
3. Переобучение и настройка модели
3.4. Методы ресемплирования

Оглавление

Методы ресемплирования для оценки результативности модели работают так: подмножество наблюдений используется для подгонки модели, и остающиеся выборки используются, чтобы оценить эффективность модели. Этот процесс повторен многократно, и результаты суммируются и выводятся итогом. Разности в методах обычно центрируются вокруг метода, по которому сделаны выборки из набора данных. Рассмотрим главные виды ресемплирования в следующих немногих подразделах.

3.4.1. k-кратная кросс-проверка

Выборки в произвольном порядке разделены в k множеств примерно равного размера. Производится подгонка модели на всех выборках кроме первого подмножества (названного первой сверткой). Вне-выборки выполняются предсказания этой моделью и используются для оценки критерии качества результата. Первое подмножество возвращается в набор данных обучения, и процедура повторяется со вторым подмножеством вне-выборки и так далее. В итоге оценивается K-передискретизованная результативность (обычно со средней и стандартной ошибкой), а используются выяснения отношений между настраиваемыми параметрами и формулой модели.

Небольшая разновидность этого метода выбирает k-разделов способом, который делает свертки сбалансированными относительно результата. Стратифицированная случайная выборка, обсужденная ранее, создает баланс относительно результата.

Другая версия, перекрестная проверка «пропуск одного» (LOOCV), является частным случаем, где k является числом наблюдений. В этом случае, так как только одна вне-выборка берется за один раз, заключительная результативность вычислена от k предсказаний от вне-выборок. Дополнительно, повторная k-кратная перекрестная проверки тиражирует процедуру многократно. Например, если бы 10-кратная перекрестная проверка была повторена пять раз, 50 различных вне-выборок использовались бы для оценки эффективности модели.

Выбор k обычно равняется 5 или 10, но нет никакого формального правила. Поскольку k становится больше, разница в размерах между набором данных обучения и подмножествами ресемплирования становится меньшей. Когда эта разность уменьшается, смещение метода становится меньшим (то есть, смещение меньше для k = 10, чем для k = 5). В этом контексте смещение – разность между оцененными и истинными значениями результативности.

Другой важный аспект метода ресемплирования – это неопределенность (то есть, дисперсия или шум). Несмещенный метод может оценивать корректное значение (например, истинная теоретическая результативность), но может привести к высокой неопределенности. Это означает, что повторение процедуры ресемплирования может произвести совсем другое значение (но сделанная достаточно много раз, она оценит истинное значение). k-кратная перекрестная проверка обычно имеет высокую дисперсию по сравнению с другими методами и, по этой причине, не может быть привлекательной. Нужно сказать, что для больших наборов данных обучения, потенциальные проблемы с дисперсией и смещением становятся незначительными.

С практической точки зрения большее значение k в вычислительном отношении обременительно. В экстремуме LOOCV больше всего в вычислительном отношении накладно, потому что требуется много подгонок модели как точки данных, и каждая подгонка модели использует подмножество, которое почти равно размеру набора данных обучения.

3.4.2. Повторные разделения для обучения/тестирования

Повторные разделения набора для обучения/тестирования также известны как «перекрестная проверка, «пропускают группу» или «перекрестная проверка Монте-Карло». Этот метод просто создает много разделений данных в моделировании и много предсказаний. Соотношением данных, входящих в каждое подмножество, управляют числом повторений.

Число повторений важно. Увеличение числа подмножеств имеет эффект уменьшения неопределенности в оценках результативности. Например, для получения грубой оценки результативности модели будет достаточно 25 повторений, если пользователь будет готов принять некоторую нестабильность в получающемся значении. Однако чтобы получить устойчивые оценки результативности необходимо выбрать большее число повторений (скажем 50—200). Это – также функция соотношения наблюдений, в произвольном порядке выделяемых множеству предсказаний; чем больше процент, тем больше повторений необходимо для уменьшения неопределенности в оценках результативности.

3.4.3. Бутстрэпинг

Выборка по бутстрэпингу – случайная выборка данных, взятых с заменой. Это означает, что, после того, как элемент данных выбран для подмножества, он все еще доступен для дальнейшего выбора. Выборка по бутстрэпингу равна исходному набору данных. В результате некоторые элементы будут представлены многократно в выборке бутстрэпинга, в то время как другие не будут выбраны вообще. Не выбранные элементы формируют выборку под названием «вне стеллажа». Для данной итерации ресемплирования в виде бутстрэпинга модель основана на сформированных выборках и используется для предсказания выборки вне стеллажа.

Предсказываем тренды. С Rattle и R в мир моделей классификации

Подняться наверх