Читать книгу Natación - Ernest W. Maglischo - Страница 17
El teorema de Bernoulli
ОглавлениеDaniel Bernoulli era un científico suizo que fue el primero en identificar la relación inversa entre la velocidad del flujo de un fluido y la presión. Encontró que, para un fluido ideal, la presión era menor cuando el fluido fluía rápidamente, y era ma yor cuando el fluido tenía menor velocidad. El teorema de Bernoulli proporciona una explicación de la forma en que se producen las fuerzas de sustentación cuando objetos con perfil de ala se desplazan a través de fluidos, o cuando estos fluyen alrededor de dichos objetos. El teorema de Bernoulli se explica mejor con respecto a la aerodinámica. Sin embargo, el ejemplo también puede aplicarse a la hidrodinámica porque tanto el aire como el agua son fluidos.
Cuando un avión se desplaza hacia delante, el movimiento relativo de las corrientes de aire inmediatamente delante del ala irá hacia atrás, ejerciendo una fuerza de arrastre que actúa en dirección contraria a la del desplazamiento del avión. El ala debe separar las corrientes de aire para poder pasar a través de ellas. Como consecuencia, algunas de las corrientes pasan por encima del ala mientras que otras pasan por debajo. En la figura 1.6, el movimiento de esta corriente se ilustra con las pequeñas flechas que representan el flujo relativo del aire.
Las alas están dispuestas de manera que la velocidad del aire que pasa por encima de ellas es mayor que la que pasa por debajo. Dado que la superficie superior del ala es redondeada y, por lo tanto, más larga que la inferior, la velocidad del aire que fluye por encima debe acelerar para llegar a la parte trasera del ala al mismo tiempo que el aire que fluye por debajo. Según el teorema de Bernoulli, este aumento de la velocidad causa que las moléculas del aire que pasan por encima del ala se separen, reduciendo así la presión en relación con la presión del aire que pasa por debajo. Los objetos tienden a desplazarse desde áreas de presión alta a áreas de presión baja, así que una vez que el diferencial de presión entre la superficie superior y la inferior del ala es lo bastante grande empujará el avión hacia arriba y lo mantendrá en el aire. Como se indicó anteriormente, la fuerza ascendente ejercida por este diferencial de presión se llama sustentación y, como se ilustra en la figura 1.6, se ejerce perpendicularmente a la dirección de la fuerza de arrastre.
Figura 1.6. Un ejemplo del papel desempeñado por el teorema de Bernoulli en el vuelo de un avión.
Counsilman y Brown sugirieron que, como la mano humana tenía forma de ala, podría utilizarse para producir sustentación de una manera similar a la que se obtiene con objetos con perfil de ala. Un ejemplo de la manera en que la propulsión en la natación podría resultar de la aplicación del teorema de Bernoulli se muestra en la figura 1.7.
Figura 1.7. La aplicación del teorema de Bernoulli a la propulsión en la natación.
La ilustración de la figura 1.7 muestra la vista inferior de un nadador de mariposa desplazando sus manos hacia atrás y hacia dentro por debajo de su cuerpo. Al hacerlo, las fuerzas de arrastre indicadas por el vector de arrastre por encima de la mano izquierda del nadador se ejercerán en la dirección opuesta al desplazamiento de sus manos. Según el teorema de Bernoulli, el agua que fluye por encima de las superficies superiores más largas de las manos del nadador (ilustrada por las flechas pequeñas por encima de la mano izquierda del nadador) será acelerada de manera que llegará al lado del meñique de la mano del nadador al mismo tiempo que el agua que fluye por debajo de su mano (ilustrada por la flecha grande debajo de la mano izquierda del nadador). Como consecuencia, la presión del agua será más baja por encima de las manos del nadador, donde fluye más rápidamente, que por debajo de sus manos, donde el agua fluye más lentamente. Esta diferencia de presión se indica con los signos + y – debajo y encima de la mano del nadador. Estos diferenciales de presión producen fuerzas de sustentación que, como sabemos, actúan perpendicularmente a la dirección de las fuerzas de arrastre. La dirección de la fuerza de sustentación se indica en el vector de sustentación por encima de la mano izquierda del nadador.
La situación en cuanto a la propulsión en la natación humana es algo más complicada de lo que se indicó en el ejemplo simplificado del avión en la figura 1.6 (véase página 19). El movimiento hacia delante del nadador, llamado propulsión o fuerza resultante en la figura 1.7 (página 19), es causado realmente por una combinación de las fuerzas de sustentación y arrastre producidas por el cuerpo del nadador. Sus manos se desplazan diagonalmente hacia atrás, causando la producción de fuerzas de sustentación y arrastre en una dirección diagonal hacia delante y no directa. La combinación de partes de estas dos fuerzas produce un componente de fuerza que apunta directamente hacia delante. Ésta es la fuerza que acelera al nadador hacia delante. (Recuerda, ya que esta ilustración es de la vista inferior del nadador, que el vector que apunta hacia arriba realmente representa una fuerza que apunta hacia delante.) Para ser totalmente exacto, la fuerza propulsora se ejerce realmente contra la mano y el brazo del nadador. Sin embargo, cuando éste resiste esa fuerza manteniendo el empuje de sus manos hacia dentro y hacia atrás, la fuerza propulsora se transfiere a su cuerpo suspendido, que acelera hacia delante pasando al lado de sus brazos.
El teorema de Bernoulli ha ganado una amplia aceptación durante las últimas dos décadas porque proporcionaba una razón científica que explica los movimientos diagonales de brazada que utilizaban los nadadores. Sin embargo, recientemente, varios expertos han llegado a dudar de su aplicación a la propulsión en la natación humana. Algunas investigaciones de los últimos años sugieren que el teorema de Bernoulli no está implicado en la propulsión en la natación en absoluto.