Читать книгу Food Chemistry - Группа авторов - Страница 62
References
Оглавление1. Restuccia, D., Gianfranco Spizzirri, U., Parisi, O.I., Cirillo, G., Curcio, M., Iemma, F., Puoci, F., Vinci, G., Picci, N., New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 21, 11, 1425–1435, 2010.
2. Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., Tobback, P., Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci. Technol., 19, S103–S1125, 2008.
3. Appendini, P. and Hotchkiss, J.H., Review of antimicrobial food packaging. Innovative Food Sci. Emerg. Technol., 3, 2, 113–126, 2002.
4. Brody, A.L., Bugusu, B., Han, J.H., Koelsch Sand, C., McHugh, T.H., Innovative food packaging solutions. J. Food Sci., 73, 8, 107–116, 2008.
5. Vanderroost, M., Ragaert, P., Devlieghere, F., De Meulenaer, B., Intelligent food packaging: The next generation. Trends Food Sci. Technol., 39, 1, 47–62, 2014.
6. Shin, J. and Selke, S.E.M., 11 Food Packaging, in: Food Processing: Principles and Applications, Second Edition, S. Clark, S. Jung, B. Lamsal, (Eds.), pp. 249–273, John Wiley & Sons, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, 2014.
7. Robertson, G.L., Packaging materials for biscuits and their influence on shelf life, in: Manley’s Technology of Biscuits, Crackers and Cookies, pp. 247–267, Woodhead Publishing, Sawston, United Kingdom, 2011.
8. Robertson, G.L., Packaging and food and beverage shelf life, in: The Stability and Shelf Life of Food, pp. 77–106, Woodhead Publishing, Sawston, United Kingdom, 2016.
9. Newsome, R., Balestrini, C.G., Baum, M.D., Corby, J., Fisher, W., Goodburn, K., Labuza, T.P., Prince, G., Thesmar, H.S., Yiannas, F., Applications and perceptions of date labeling of food. Compr. Rev. Food Sci. Food Saf., 13, 4, 745–769, 2014.
10. Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., Tobback, P., Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci. Technol., 19, S103–S1125, 2008.
11. Kerry, J. and Butler, P. (Eds.), Smart packaging technologies for fast moving consumer goods, John Wiley & Sons, Sawston, United Kingdom, 2008.
12. Hellström, D. and Saghir, M., Packaging and logistics interactions in retail supply chains. Packag. Technol. Sci.: An International Journal, 20, 3, 197–216, 2007.
13. Sohrabpour, V., Oghazi, P., Olsson, A., An improved supplier driven packaging design and development method for supply chain efficiency. Packag. Technol. Sci., 29, 3, 161–173, 2016.
14. Chauhan, O.P., Lakshmi, S., Pandey, A.K., Ravi, N., Gopalan, N., Sharma, R.K., Non-destructive quality monitoring of fresh fruits and vegetables. Def. Life Sci. J., 20, 2, 103, 2017.
15. Sarig, Y., Potential applications of artificial olfactory sensing for quality evaluation of fresh produce. J. Agric. Eng. Res., 77, 3, 239–258, 2000.
16. Aboonajmi, M. and Faridi, H., Nondestructive quality assessment of Agrofood products, in: Proceedings of the 3rd Iranian international NDT conference, 2016.
17. Abasi, S., Minaei, S., Jamshidi, B., Fathi, D., Dedicated non-destructive devices for food quality measurement: A review. Trends Food Sci. Technol., 78, 197–205, 2018.
18. Kawakami, M., Sarma, S., Himizu, K. et al., Aroma characteristics of Darjeeling tea, in: Proceedings of International Conference O-CHA (Tea) Culture Science, Shizuoka, Japan, pp. 110–116, 2004.
19. Bhattacharyya, N., Seth, S., Tudu, B. et al., Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sens. Actuators B Chem., 122, 627–634, 2007.
20. Lou, X., Ye, Y., Wang, Y., Sun, Y., Pan, D., Cao, J., Effect of high-pressure treatment on taste and metabolite profiles of ducks with two different vinassecuring processes. Food Res. Int., 105, 703–712, 2018.
21. Marcone, M.F., Wang, S., Albabish, W., Nie, S., Somnarain, D., Hill, A., Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int., 51, 2, 729–747, 2013.
22. Williamson, K. and Hatzakis, E., NMR spectroscopy as a robust tool for the rapid evaluation of the lipid profile of fish oil supplements. JoVE (J. Visualized Exp.), 123, 123, e55547, 2017.
23. Hussain, A., Pu, H., Sun, D.W., Innovative nondestructive imaging techniques for ripening and maturity of fruits–a review of recent applications. Trends Food Sci. Technol., 72, 144–152, 2018.
24. Ezeanaka, M.C., Nsor-Atindana, J., Zhang, M., Online Low-field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) for Food Quality Optimization in Food Processing. Food Bioprocess Tech., 12, 9, 1435–1451, 2019.
25. Caporaso, N., Whitworth, M.B., Fisk, I.D., Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Appl. Spectrosc. Rev., 53, 8, 667–687, 2018.
26. Dachoupakan Sirisomboon, C., Putthang, R., Sirisomboon, P., Application of near infrared spectroscopy to detect aflatoxigenic fungal contamination in rice. Food Control, 33, 1, 207–214, 2013.
27. Bindhu, M.R. and Umadevi, M., Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett., 120, 122–125, 2014.
28. Ethiraj, A.S., Jayanthi, S., Ramalingam, C., Banerjee, C., Control of size and antimicrobial activity of green synthesized silver nanoparticles. Mater. Lett., 185, 526–529, 2016.
29. Gopinath, K., Shanmugam, V.K., Gowri, S., Senthilkumar, V., Kumaresan., S., Arumugam, A., Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. J. Nanostruct. Chem., 4, 83, 2014.
30. Kujur, A., Kiran, S., Dubey, N.K., Prakash, B., Microencapsulation of Gaultheria procumbens essential oil using chitosan-cinnamic acid microgel: improvement of antimicrobial activity, stability and mode of action. LWT-Food Sci. Technol., 86, 132–138, 2017.
31. Martins, F.C., Sentanin, M.A., De Souza, D., Analytical methods in food additives determination: compounds with functional applications. Food Chem., 272, 732–750, 2019.
32. Maryam, I., Huzaifa, U., Hindatu, H., Zubaida, S., Nanoencapsulation of essential oils with enhanced antimicrobial activity: A new way of combating antimicrobial Resistance. Int. J. Pharmacogn. Phytochem., 4, 3, 165, 2015.
33. Prakash, B., Kujur, A., Yadav, A., Kumar, A., Singh, P.P., Dubey, N.K., Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 89, 1–11, 2018.
34. Sun, B. and Wang, J., Food additives, in: Food Safety in China: Science, Technology, Management and Regulation, pp. 186–200, 2017.
35. Lei, T. and Sun, D.W., Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends Food Sci. Technol., 88, 527–542, 2019.
36. Alamprese, C., Casale, M., Sinelli, N., Lanteri, S., Casiraghi, E., Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Sci. Technol., 53, 1, 225–232, 2013.
37. Salguero-Chaparro, L., Gaitán-Jurado, A.J., Ortiz-Somovilla, V., Peña-Rodríguez, F., Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives. Food Control, 30, 2, 504–509, 2013.
38. Xue, L., Cai, J., Li, J., Liu, M., Application of particle swarm optimization (PSO) algorithm to determine dichlorvos residue on the surface of navel range with Vis-NIR spectroscopy. Proc. Eng., 29, 4124–4128, 2012.
39. Luna, A.S., da Silva, A.P., Pinho, J.S., Ferre, J., Boque, R., Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy. Spectrochim. Acta A, 100, 115–119, 2013.
40. Sarkar, M., Gupta, N., Assaad, M., Nondestructive Food Quality Monitoring Using Phase Information in Time-Resolved Reflectance Spectroscopy. IEEE Trans. Instrum. Meas., 69, 10, 7787–7795, 2020.
41. Ebrahimi-Najafabadi, H., Leardi, R., Oliveri, P., Chiara Casolino, M., JalaliHeravi, M., Lanteri, S., Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta, 99, 175–179, 2012.
42. Leiva-Valenzuela, G.A., Lu, R., Aguilera, J.M., Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J. Food Eng., 115, 1, 91–98, 2013.
43. Suktanarak, S. and Teerachaichayut, S., Non-destructive quality assessment of hens’ eggs using hyperspectral images. J. Food Eng., 215, 97–103, 2017.
44. Sanchez, P.D.C., Hashim, N., Shamsudin, R., Nor, M.Z.M., Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: A review. Trends Food Sci. Technol., 96, 208–221, 2020.
45. Vanoli, M., Rizzolo, A., Grassi, M., Spinelli, L., Verlinden, B.E., Torricelli, A., Studies on classification models to discriminate “Braeburn” apples affected by internal browning using the optical properties measured by time-resolved reflectance spectroscopy. Postharvest Biol. Technol., 91, 112–121, 2014.
46. Vanoli, M., Grassi, M., Spinelli, L., Torricelli, A., Rizzolo, A., Quality and nutraceutical properties of mango fruit: influence of cultivar and biological age assessed by Time-resolved Reflectance Spectroscopy. Adv. Hortic. Sci., 32, 3, 407–420, 2018.
47. Ibrahim, A., Grassi, M., Lovati, F., Parisi, B., Spinelli, L., Torricelli, A., Vanoli, M., Non-destructive detection of potato tubers internal defects: critical insight on the use of time-resolved spectroscopy. Adv. Hortic. Sci., 34, 1S, 43–51, 2020.
48. Djenane, D. and Roncalés, P., Carbon monoxide in meat and fish packaging: advantages and limits. Foods, 7, 2, 12, 2018.
49. Gaikwad, P.S., Yadav, B.K., Sugumar, A., Fabrication of natural colorimetric indicators for monitoring freshness of ready-to-cook idli batter. Packag. Technol. Sci., 34, 1–8, 2020.
50. Fellows, P.J., Food Processing Technology: Principles and Practice, Elsevier, Woodhead Publishing, Sawston, United Kingdom, 2009.
51. Ghosh, T. and Dash, K.K., Modeling on respiration kinetics and modified atmospheric packaging of fig fruit. J. Food Meas. Charact., 14, 1092–1104, 2020.
52. Minh, N.P., Influence of modified atmospheric packaging and storage temperature on the physico-chemical, microbial and organoleptic properties of cantaloupe (Cucumis melo) fruit. Res. Crops, 21, 3, 506–511, 2020.
53. Baswal, A.K., Dhaliwal, H.S., Singh, Z., Mahajan, B.V.C., Influence of Types of Modified Atmospheric Packaging (MAP) Films on Cold-Storage Life and Fruit Quality of ‘Kinnow’Mandarin (Citrus nobilis Lour X C. deliciosa Tenora). Int. J. Fruit Sci., 20, 1–18, 2020.
54. Junior, M.M., Castanha, N., Dos Anjos, C.B.P., Augusto, P.E.D., Sarmento, S.B.S., Ozone technology as an alternative to fermentative processes to improve the oven-expansion properties of cassava starch. Food Res. Int., 123, 56–63, 2019.
55. Pandiselvam, R., Subhashini, S., Banuu Priya, E.P., Kothakota, A., Ramesh, S.V., Shahir, S., Ozone based food preservation: a promising green technology for enhanced food safety. Ozone Sci. Eng., 41, 1, 17–34, 2019.
56. Porto, E., Alves Filho, E.G., Silva, L.M.A., Fonteles, T.V., do Nascimento, R.B.R. et al., Ozone and plasma processing effect on green coconut water. Food Res. Int., 131, 109000, 2020.
57. Brodowska, A.J., Nowak, A., Śmigielski, K., Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr., 58, 13, 2176–2201, 2018.
58. Gallego-Juárez, J.A., Basic principles of ultrasound, in: Ultrasound Food Process, pp. 1–26, John Wiley & Sons, Woodhead Publishing, Sawston, United Kingdom, 2017.
59. Misra, N.N., Schlüter, O., Cullen, P.J. (Eds.), Cold Plasma in Food and Agriculture: Fundamentals and Applications, Academic Press, Cambridge, Massachusetts, 2016.
60. Knirsch, M.C., Dos Santos, C.A., de Oliveira Soares, A.A.M., Penna, T.C.V., Ohmic heating–a review. Trends Food Sci. Technol., 21, 9, 436–441, 2010.
61. Kaur, N. and Singh, A.K., Ohmic heating: concept and applications—a review. Crit. Rev. Food Sci. Nutr., 56, 14, 2338–2351, 2016.
62. Liu, Y., Tang, T., Duan, S., Qin, Z., Zhao, H. et al., Applicability of Rice Doughs as Promising Food Materials in Extrusion-Based 3D Printing. Food Bioprocess. Tech., 13, 3, 548–563, 2020.
63. Kalogeropoulos, N., Salta, F.N., Chiou, A., Andrikopoulos, N.K., Formation and distribution of oxidized fatty acids during deep-and pan-frying of potatoes. Eur. J. Lipid Sci., 109, 11, 1111–1123, 2007.
64. Arvanitoyannis, I.S. and Dionisopoulou, N., Acrylamide: formation, occurrence in food products, detection methods, and legislation. Crit. Rev. Food Sci. Nutr., 54, 6, 708–733, 2014.
65. Odueke, O.B., Farag, K.W., Baines, R.N., Chadd, S.A., Irradiation applications in dairy products: a review. Food Bioprocess. Tech., 9, 5, 751–767, 2016.
66. Pati, S., Chatterji, A., Dash, B.P., Raveen Nelson, B., Sarkar, T. et al., Structural Characterization and Antioxidant Potential of Chitosan by γ-Irradiation from the Carapace of Horseshoe Crab. Polymers, 12, 10, 2361, 2020.
67. Cserháti, T., Chromatography in authenticity and traceability tests of vegetable oils and dairy products: a review. Biomed. Chromatogr., 19, 3, 183–190, 2005.
68. [15] Wang, M., Li, R., Zou, S., Determination of carbofuran residue in aquatic products by gas chromatography. Chin. J. Chromatogr., 26, 6, 775–777, 2008.
69. McDowell, I., Taylor, S., Gay, C., The Phenolic Pigment Composition of Black Tea Liquors Part I: Predicting Quality. J. Agric. Food Chem., 69, 467–474, 1995.
70. [22] Calabrese, M., Stancher, B., Riccobon, P., High-Performance Liquid Chromatography Determination of Proline Isomers in Italian Wines. J. Agric. Food Chem., 69, 361–366, 1995.
71. Haughey, S.A., Graham, S.F., Cancouet, E., Elliott, C.T., The application of Near- Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chem., 136, 3–4, 1557–1561, 2012.
72. [31] Ozen, B.F. and Mauer, L.J., Detection of hazelnut oil adulteration using FTIR spectroscopy. J. Agric. Food Chem., 50, 3898–3901, 2002.
73. Hohmann, M., Differentiation of Organically and Conventionally Grown Tomatoes by Chemometric Analysis of Combined Data from Proton Nuclear Magnetic Resonance and Mid-Infrared Spectroscopy and Stable Isotope Analysis. J. Agric. Food Chem., 63, 43, 9666–9675, 2015.
74. [36] Drivelos, S.A. and Georgiou, C.A., Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TrAC - Trends Analyt. Chem., 40, 38–51, 2012.
75. Casale, M., Oliveri, P., Armanino, C., NIR and UV Vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterization of Italian red wines. Anal. Chim. Acta, 668, 143–148, 2010.
76. [49] Singh, V.P., Pathak, V., Nayak, N.K., Verma, A.K., Umaraw, P., Recent developments in meat species speciation – a review. J. Livest. Sci., 5, 49–64, 2014.
77. Khan, S.K., Mirza, J., Anwar, F., Abdin, M.Z., Development of RAPD marker for authentication of Piper nigrum (L). Environ. We Int. J. Sci. Tech., 5, 47–56, 2010.
78. [61] Babaei, S., Talebi, M., Bahar, M., Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control, 35, 1, 323–328, 2013.
79. Dhanya, K., Syamkumar, S., Jaleel, K., Sasikumar, B., Random amplified polymorphic DNA technique for the detection of plant based adulterants in chilli powder (Capsicum annuum). J. Spices Aromat. Crops, 17, 75–81, 2008.
80. [69] Cao, H., But, P.P., Shaw, P.C., Authentication of the Chinese drug “Ku-di-dan” (herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). Acta Pharm. Sin., 31, 543–553, 1996.
81. Martins-Lopes, P., Gome, S., Santos, E., Guedes-Pinto, H., DNA markers for Portuguese olive oil fingerprinting. J. Agric. Food Chem., 56, 24, 11786–1179, 2008.
82. [75] Pereira, L., Martins-Lopes, P., Batista, C., Zanol, G.C., Clímaco, P., Brazão, J., Molecular markers for assessing must varietal origin. Food Anal. Methods, 5, 6, 1252–1259, 2012.
83. Dhanya, K., Syamkumar, S., Siju, S., Sasikumar, B., Sequence characterized amplified region markers: A reliable tool for adulterant detection in turmeric powder. Food Res. Int., 44, 9, 2889–2895, 2011.
84. Schiefenhovel, K. and Rehbein, H., Differentiation of Sparidae species by DNA sequence analysis, PCR-SSCP and IEF of sarcoplasmic proteins. Food Chem., 138, 1, 154–160, 2013.
85. Cheng, C.Y., Shi, Y.C., Lin, S.R., Use of real-time PCR to detect surimi adulteration in vegetarian foods. J. Mar. Sci. Technol., 20, 5, 570–574, 2012.
86. Kesmen, Z., Yetiman, A.E., Sahin, F., Yetim, H., Detection of Chicken and Turkey Meat in Meat Mixtures by Using Real-Time PCR Assays. J. Food Sci., 77, 2, C167–173, 2012.
87. Zhang, W.J., Qin, C.X., Guan, Q.C., Analytical Methods, Detection of peanut (Arachis hypogaea) allergen by Real-time PCR method with internal amplification control. Food Chem., 174, 547–552, 2015.
88. Wu, Y., Chen, Y., Wang, Y.G.J., Xu, B., Huang, W., Yuan, F., Detection of olive oil using the Evagreen real-time PCR method. Eur. Food Res. Technol., 227, 1117–1124, 2008.
89. Drummond, M.G., Brasil, B.S.A.F., Dalsecco, L.S., Brasil, R.S.A.F., Teixeira, L.V., Oliveira, D.A.A., A versatile real-time PCR method to quantify bovine contamination in buffalo products. Food Control, 29, 131–137, 2013.
90. Deng, H. and Gao, Z., Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal. Chim. Acta, 853, 30–45, 2015.
91. [129] Carles, M., Cheung, M.K., Moganti, S., Dong, T.T., Tsim, K.W., Ip, N.Y., Sucher, N.J., A DNA microarray for the authentication of toxic traditional Chinese medicinal plants. Planta Med., 71, 580–584, 2005.
92. Zammatteo, N., Lockman, L., Brasseur, F., De, P.E., Lurquin, C., Lobert, P.E., Hamels, S., Boon, T., Remacle, J., DNA microarray to monitor the expression of MAGE-A genes. Clin. Chem., 48, 25–34, 2002.
93. [137] Burns, M., Wiseman, G., Knight, A., Bramley, P., Foster, L., Rollinson, S., Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud. Analyst, 141, 1, 45–61, 2016.
94. Zhang, R., Huo, W., Zhu, W., Mao, S., Characterization of bacterial community of raw milk from dairy cows during subacute ruminal acidosis challenge by highthroughput sequencing. J. Sci. Food Agric., 95, 5, 1072–1079, 2015.
95. Garofalo, C., Osimani, A., Milanovic, V., Aquilanti, L., De, F.F., Stellato, G., Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol., 49, 123–133, 2015.
96. Willems, S., Fraiture, M.A., Deforce, D., De, K.S.C., De, L.M., Ruttink, T., Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing. Food Chem., 192, 788–798, 2016.
97. Colmenero, M.M., Martinez, J.L., Roca, A., Garcia, V.E., NGS tools for traceability in candies as high processed food products: Ion Torrent PGM versus conventional PCR-cloning. Food Chem., 214, 631–636, 2017.
98. Mohamad, I., K.S.S., Shakeel, W., Rapid Detection of Adulteration in Indigenous Saffron of Kashmir Valley, India. Res. J. Forensic Sci., 3, 7–11, 2015.
99. Dar, M.M., Detection of Sudan Dyes in Red Chilli Powder by Thin Layer Chromatography. J. Allergy Ther., 2012. https://doi.org/10.4172/scientificreports. 2, 1–3, 586.
100. Tateo, F. and Bononi, M., Fast determination of Sudan I by HPLC/APCI-MS in hot chilli spices, and oven-baked foods. J. Agric. Food Chem., 52, 655–658, 2004.
1 Email: mousumi1976@gmail.com