Читать книгу Drug Transporters - Группа авторов - Страница 113
REFERENCES
Оглавление1 [1] Holohan PD, Ross CR. Mechanisms of organic cation transport in kidney plasma membrane vesicles: 1. Countertransport studies. J Pharmacol Exp Ther 1980; 215 (1):191–7.
2 [2] Holohan PD, Ross CR. Mechanisms of organic cation transport in kidney plasma membrane vesicles: 2. delta pH studies. J Pharmacol Exp Ther 1981; 216 (2):294–298.
3 [3] Grundemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 1994; 372 (6506):549–552.
4 [4] Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 1999; 31 (1):394–395.
5 [5] Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 2005; 102 (50):17923–17928.
6 [6] Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, Ogawa O, Inui K. Identification and functional characterization of a new human kidney‐specific H+/organic cation antiporter, kidney‐specific multidrug and toxin extrusion 2. J Am Soc Nephrol 2006; 17 (8):2127–2135.
7 [7] Uchida Y, Zhang Z, Tachikawa M, Terasaki T. Quantitative targeted absolute proteomics of rat blood‐cerebrospinal fluid barrier transporters: comparison with a human specimen. J Neurochem 2015; 134 (6):1104–1115.
8 [8] Lapczuk‐Romanska J, Busch D, Gieruszczak E, Drozdzik A, Piotrowska K, Kowalczyk R, Oswald S, Drozdzik M. Membrane transporters in human parotid gland‐targeted proteomics approach. Int J Mol Sci 2019; 20 (19):4825.
9 [9] Arner P, Kulyté A, Batchelor K, Laurencikiene J, Livingston J, Rydén M. Mapping of biguanide transporters in human fat cells and their impact on lipolysis. Diabetes Obes Metab 2018; 20 (10):2416–2425.
10 [10] Pelkonen L, Sato K, Reinisalo M, Kidron H, Tachikawa M, Watanabe M, Uchida Y, Urtti A, Terasaki T. LC‐MS/MS based quantitation of ABC and SLC transporter proteins in plasma membranes of cultured primary human retinal pigment epithelium cells and immortalized ARPE19 cell line. Mol Pharm 2017; 14 (3):605–613.
11 [11] Berg T, Hegelund‐Myrbäck T, Öckinger J, Zhou XH, Brännström M, Hagemann‐Jensen M, Werkström V, Seidegård J, Grunewald J, Nord M, Gustavsson L. Expression of MATE1, P‐gp, OCTN1 and OCTN2, in epithelial and immune cells in the lung of COPD and healthy individuals. Respir Res 2018; 19 (1):68.
12 [12] Harrach S, Barz V, Pap T, Pavenstädt H, Schlatter E, Edemir B, Distler J, Ciarimboli G, Bertrand J. Notch signaling activity determines uptake and biological effect of imatinib in systemic sclerosis dermal fibroblasts. J Invest Dermatol 2019; 139 (2):439–447.
13 [13] Suhy AM, Webb A, Papp AC, Geier EG, Sadee W. Expression and splicing of ABC and SLC transporters in the human blood‐brain barrier measured with RNAseq. Eur J Pharm Sci 2017; 103:47–51.
14 [14] Lickteig AJ, Cheng X, Augustine LM, Klaassen CD, Cherrington NJ. Tissue distribution, ontogeny and induction of the transporters Multidrug and toxin extrusion (MATE) 1 and MATE2 mRNA expression levels in mice. Life Sci 2008; 83 (1–2):59–64.
15 [15] Hiasa M, Matsumoto T, Komatsu T, Moriyama Y. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. Am J Physiol Cell Physiol 2006; 291 (4):C678–C686.
16 [16] Terada T, Masuda S, Asaka J, Tsuda M, Katsura T, Inui K. Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res 2006; 23 (8):1696–1701.
17 [17] Ohta KY, Inoue K, Hayashi Y, Yuasa H. Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos 2006; 34 (11):1868–1874.
18 [18] Uchida Y, Toyohara T, Ohtsuki S, Moriyama Y, Abe T, Terasaki T. Quantitative targeted absolute proteomics for 28 transporters in brush‐border and basolateral membrane fractions of rat kidney. J Pharm Sci 2016; 105 (2):1011–1016.
19 [19] Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE, Evers R, Unadkat JD. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos 2015; 43 (3):367–374.
20 [20] Zhang X, Cherrington NJ, Wright SH. Molecular identification and functional characterization of rabbit MATE1 and MATE2‐K. Am J Physiol Renal Physiol 2007; 293 (1):F360–F370.
21 [21] Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, Moriyama Y, Omote H. Characterization of the human MATE2 proton‐coupled polyspecific organic cation exporter. Int J Biochem Cell Biol 2011; 43 (6):913–918.
22 [22] Hiasa M, Matsumoto T, Komatsu T, Omote H, Moriyama Y. Functional characterization of testis‐specific rodent multidrug and toxic compound extrusion 2, a class III MATE‐type polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2007; 293 (5):C1437–C1444.
23 [23] Motohashi H, Inui K. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2‐K. Mol Aspects Med 2013; 34 (2–3):661–668.
24 [24] Martínez‐Guerrero LJ, Evans KK, Dantzler WH, Wright SH. The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules. Am J Physiol Renal Physiol 2016; 310 (1):F57–F67.
25 [25] Dangprapai Y, Wright SH. Interaction of H+ with the extracellular and intracellular aspects of hMATE1. Am J Physiol Renal Physiol 2011; 301 (3):F520–F528.
26 [26] Tsuda M, Terada T, Asaka J, Ueba M, Katsura T, Inui K. Oppositely directed H+ gradient functions as a driving force of rat H+/organic cation antiporter MATE1. Am J Physiol Renal Physiol 2007; 292 (2):F593–F598.
27 [27] Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K. Substrate specificity of MATE1 and MATE2‐K, human multidrug and toxin extrusions/H(+)‐organic cation antiporters. Biochem Pharmacol 2007; 74 (2):359–371.
28 [28] Watanabe S, Tsuda M, Terada T, Katsura T, Inui K. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1‐deficient mice. J Pharmacol Exp Ther 2010; 334 (2):651–656.
29 [29] Ohta KY, Inoue K, Yasujima T, Ishimaru M, Yuasa H. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci 2009; 12 (3):388–396.
30 [30] König J, Zolk O, Singer K, Hoffmann C, Fromm MF. Double‐transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol 2011; 163 (3):546–555.
31 [31] Sato T, Masuda S, Yonezawa A, Tanihara Y, Katsura T, Inui K. Transcellular transport of organic cations in double‐transfected MDCK cells expressing human organic cation transporters hOCT1/hMATE1 and hOCT2/hMATE1. Biochem Pharmacol 2008; 76 (7):894–903.
32 [32] Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol 2009; 75 (6):1280–1286.
33 [33] Li Q, Peng X, Yang H, Wang H, Shu Y. Deficiency of multidrug and toxin extrusion 1 enhances renal accumulation of paraquat and deteriorates kidney injury in mice. Mol Pharm 2011; 8 (6):2476–2483.
34 [34] Hume WE, Shingaki T, Takashima T, Hashizume Y, Okauchi T, Katayama Y, Hayashinaka E, Wada Y, Kusuhara H, Sugiyama Y, Watanabe Y. The synthesis and biodistribution of [(11)C]metformin as a PET probe to study hepatobiliary transport mediated by the multi‐drug and toxin extrusion transporter 1 (MATE1) in vivo. Bioorg Med Chem 2013; 21 (24):7584–7590.
35 [35] Shingaki T, Hume WE, Takashima T, Katayama Y, Okauchi T, Hayashinaka E, Wada Y, Cui Y, Kusuhara H, Sugiyama Y, Watanabe Y. Quantitative evaluation of mMate1 function based on minimally invasive measurement of tissue concentration using PET with [(11)C]Metformin in mouse. Pharm Res 2015; 32 (8):2538–2547.
36 [36] Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, Inagaki N, Inui K, Katsura T. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin‐induced lactic acidosis. Br J Pharmacol 2012; 166 (3):1183–1191.
37 [37] Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent‐induced nephrotoxicity. Biochem Pharmacol 2007; 74 (3):477–487.
38 [38] Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1‐3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 2006; 319 (2):879–886.
39 [39] Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin‐induced nephrotoxicity. Biochem Pharmacol 2010; 80 (11):1762–1767.
40 [40] Fujita S, Hirota T, Sakiyama R, Baba M, Ieiri I. Identification of drug transporters contributing to oxaliplatin‐induced peripheral neuropathy. J Neurochem 2019; 148 (3):373–385.
41 [41] Jensen O, Rafehi M, Tzvetkov MV, Brockmöller J. Stereoselective cell uptake of adrenergic agonists and antagonists by organic cation transporters. Biochem Pharmacol 2020; 171:113731.
42 [42] Misaka S, Knop J, Singer K, Hoier E, Keiser M, Müller F, Glaeser H, König J, Fromm MF. The nonmetabolized β‐blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2‐K, and P‐glycoprotein, but Not of OATP1B1 and OATP1B3. Mol Pharm 2016; 13 (2):512–519.
43 [43] Yin J, Duan H, Shirasaka Y, Prasad B, Wang J. Atenolol renal secretion is mediated by human organic cation transporter 2 and multidrug and toxin extrusion proteins. Drug Metab Dispos 2015; 43 (12):1872–1881.
44 [44] Chen J, Brockmöller J, Seitz T, König J, Chen X, Tzvetkov MV. Tropane alkaloids as substrates and inhibitors of human organic cation transporters of the SLC22 (OCT) and the SLC47 (MATE) families. Biol Chem 2017; 398 (2):237–249.
45 [45] Deutsch B, Neumeister C, Schwantes U, Fromm MF, König J. Interplay of the Organic Cation Transporters OCT1 and OCT2 with the apically localized export protein MATE1 for the polarized transport of trospium. Mol Pharm 2019; 16 (2):510–517.
46 [46] Chan BS, Seale JP, Duggin GG. The mechanism of excretion of paraquat in rats. Toxicol Lett 1997; 90 (1):1–9.
47 [47] Chen Y, Zhang S, Sorani M, Giacomini KM. Transport of paraquat by human organic cation transporters and multidrug and toxic compound extrusion family. J Pharmacol Exp Ther. 2007; 322 (2):695–700.
48 [48] Kawasaki T, Matsumoto T, Iwai Y, Kawakami M, Juge N, Omote H, Nabekura T, Moriyama Y. Purification and reconstitution of polyspecific H(+)/organic cation antiporter human MATE1. Biochim Biophys Acta Biomembr 2018; 1860 (11):2456–64.
49 [49] Chedik L, Bruyere A, Le Vee M, Stieger B, Denizot C, Parmentier Y, Potin S, Fardel O. Inhibition of human drug transporter activities by the pyrethroid pesticides allethrin and tetramethrin. PLoS One 2017; 12 (1):e0169480.
50 [50] Miyake T, Mizuno T, Takehara I, Mochizuki T, Kimura M, Matsuki S, Irie S, Watanabe N, Kato Y, Ieiri I, Maeda K, Ando O, Kusuhara H. Elucidation of N (1)‐methyladenosine as a potential surrogate biomarker for drug interaction studies involving renal organic cation transporters. Drug Metab Dispos 2019; 47 (11):1270–1280.
51 [51] Kajiwara M, Ban T, Matsubara K, Nakanishi Y, Masuda S. Urinary dopamine as a potential index of the transport activity of multidrug and toxin extrusion in the kidney. Int J Mol Sci 2016; 17 (8):1228.
52 [52] Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K, Kondo T, Yuasa H, Nakayama H, Horita S, Sugiyama Y. Potent and specific inhibition of mMate1‐mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther 2010; 333 (1):341–350.
53 [53] Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, Morrissey KM, Sali A, Huang Y, Giacomini KM. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem 2013; 56 (3):781–795.
54 [54] Astorga B, Ekins S, Morales M, Wright SH. Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins MATE1 and MATE2‐K. J Pharmacol Exp Ther 2012; 341 (3):743–755.
55 [55] Xu Y, Liu X, Wang Y, Zhou N, Peng J, Gong L, Ren J, Luo C, Luo X, Jiang H, Chen K, Zheng M. Combinatorial pharmacophore modeling of multidrug and toxin extrusion transporter 1 inhibitors: a theoretical perspective for understanding multiple inhibitory mechanisms. Sci Rep 2015; 5:13684.
56 [56] Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate‐dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther 2013; 346 (2):300–10.
57 [57] Hacker K, Maas R, Kornhuber J, Fromm MF, Zolk O. Substrate‐dependent inhibition of the human organic cation transporter OCT2: a comparison of metformin with experimental substrates. PLoS One 2015; 10 (9):e0136451.
58 [58] Martínez‐Guerrero LJ, Wright SH. Substrate‐dependent inhibition of human MATE1 by cationic ionic liquids. J Pharmacol Exp Ther 2013; 346 (3):495–503.
59 [59] Martínez‐Guerrero LJ, Morales M, Ekins S, Wright SH. Lack of influence of substrate on ligand interaction with the human multidrug and toxin extruder, MATE1. Mol Pharmacol 2016; 90 (3):254–64.
60 [60] Yin J, Duan H, Wang J. Impact of substrate‐dependent inhibition on renal organic cation transporters hOCT2 and hMATE1/2‐K‐mediated drug transport and intracellular accumulation. J Pharmacol Exp Ther 2016; 359 (3):401–410.
61 [61] Zhang X, Wright SH. MATE1 has an external COOH terminus, consistent with a 13‐helix topology. Am J Physiol Renal Physiol 2009; 297 (2):F263–F271.
62 [62] Kobara A, Hiasa M, Matsumoto T, Otsuka M, Omote H, Moriyama Y. A novel variant of mouse MATE‐1 H+/organic cation antiporter with a long hydrophobic tail. Arch Biochem Biophys. 2008; 469 (2):195–199.
63 [63] Zhang X, He X, Baker J, Tama F, Chang G, Wright SH. Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein. J Biol Chem 2012; 287 (33):27971–27982.
64 [64] He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G. Structure of a cation‐bound multidrug and toxic compound extrusion transporter. Nature 2010; 467 (7318):991–994.
65 [65] Miyauchi H, Moriyama S, Kusakizako T, Kumazaki K, Nakane T, Yamashita K, Hirata K, Dohmae N, Nishizawa T, Ito K, Miyaji T, Moriyama Y, Ishitani R, Nureki O. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat Commun 2017; 8 (1):1633.
66 [66] Asaka J, Terada T, Tsuda M, Katsura T, Inui K. Identification of essential histidine and cysteine residues of the H+/organic cation antiporter multidrug and toxin extrusion (MATE). Mol Pharmacol 2007; 71 (6):1487–93.
67 [67] Matsumoto T, Kanamoto T, Otsuka M, Omote H, Moriyama Y. Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2008; 294 (4):C1074–8.
68 [68] Kajiwara M, Terada T, Asaka J, Ogasawara K, Katsura T, Ogawa O, Fukatsu A, Doi T, Inui K. Critical roles of Sp1 in gene expression of human and rat H+/organic cation antiporter MATE1. Am J Physiol Renal Physiol 2007; 293 (5):F1564–F1570.
69 [69] Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug‐metabolizing enzymes and drug transporters. Mol Pharmacol 2013; 84 (6):808–823.
70 [70] Fukuda Y, Kaishima M, Ohnishi T, Tohyama K, Chisaki I, Nakayama Y, Ogasawara‐Shimizu M, Kawamata Y. Fluid shear stress stimulates MATE2‐K expression via Nrf2 pathway activation. Biochem Biophys Res Commun 2017; 484 (2):358–364.
71 [71] Atilano‐Roque A, Aleksunes LM, Joy MS. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin‐induced kidney cell injury. Toxicol Lett 2016; 259:52–59.
72 [72] Arruda AC, Perilhão MS, Santos WA, Gregnani MF, Budu A, Neto JCR, Estrela GR, Araujo RC. PPARα‐dependent modulation by metformin of the expression of OCT‐2 and MATE‐1 in the kidney of mice. Molecules 2020; 25 (2):392.
73 [73] Ferrigno A, Di Pasqua LG, Berardo C, Siciliano V, Rizzo V, Adorini L, Richelmi P, Vairetti M. The farnesoid X receptor agonist obeticholic acid upregulates biliary excretion of asymmetric dimethylarginine via MATE‐1 during hepatic ischemia/reperfusion injury. PLoS One 2018; 13 (1):e0191430.
74 [74] Kantauskaite M, Hucke A, Reike M, Ahmed Eltayeb S, Xiao C, Barz V, Ciarimboli G. Rapid regulation of human multidrug and extrusion transporters hMATE1 and hMATE2K. Int J Mol Sci 2020; 21 (14):5157.
75 [75] Xu YJ, Wang Y, Lu YF, Xu SF, Wu Q, Liu J. Age‐associated differences in transporter gene expression in kidneys of male rats. Mol Med Rep 2017; 15 (1):474–482.
76 [76] Wen J, Zeng M, Shu Y, Guo D, Sun Y, Guo Z, Wang Y, Liu Z, Zhou H, Zhang W. Aging increases the susceptibility of cisplatin‐induced nephrotoxicity. Age (Dordr) 2015; 37 (6):112.
77 [77] Meetam P, Srimaroeng C, Soodvilai S, Chatsudthipong V. Role of estrogen in renal handling of organic cation, tetraethylammonium: in vivo and in vitro studies. Biol Pharm Bull 2009; 32 (12):1968–72.
78 [78] He R, Ai L, Zhang D, Wan L, Zheng T, Yin J, Lu H, Lu J, Lu F, Liu F, Jia W. Different effect of testosterone and oestrogen on urinary excretion of metformin via regulating OCTs and MATEs expression in the kidney of mice. J Cell Mol Med 2016; 20 (12):2309–2317.
79 [79] Lee N, Hebert MF, Prasad B, Easterling TR, Kelly EJ, Unadkat JD, Wang J. Effect of gestational age on mRNA and protein expression of polyspecific organic cation transporters during pregnancy. Drug Metab Dispos 2013; 41 (12):2225–2232.
80 [80] Yacovino LL, Gibson CJ, Aleksunes LM. Down‐regulation of brush border efflux transporter expression in the kidneys of pregnant mice. Drug Metab Dispos 2013; 41 (2):320–325.
81 [81] Bergagnini‐Kolev MC, Hebert MF, Easterling TR, Lin YS. Pregnancy increases the renal secretion of N(1)‐methylnicotinamide, an endogenous probe for renal cation transporters, in patients prescribed metformin. Drug Metab Dispos 2017; 45 (3):325–329.
82 [82] Nishihara K, Masuda S, Ji L, Katsura T, Inui K. Pharmacokinetic significance of luminal multidrug and toxin extrusion 1 in chronic renal failure rats. Biochem Pharmacol. 2007; 73 (9):1482–1490.
83 [83] Matsuzaki T, Morisaki T, Sugimoto W, Yokoo K, Sato D, Nonoguchi H, Tomita K, Terada T, Inui K, Hamada A, Saito H. Altered pharmacokinetics of cationic drugs caused by down‐regulation of renal rat organic cation transporter 2 (Slc22a2) and rat multidrug and toxin extrusion 1 (Slc47a1) in ischemia/reperfusion‐induced acute kidney injury. Drug Metab Dispos. 2008; 36 (4):649–654.
84 [84] Morisaki T, Matsuzaki T, Yokoo K, Kusumoto M, Iwata K, Hamada A, Saito H. Regulation of renal organic ion transporters in cisplatin‐induced acute kidney injury and uremia in rats. Pharm Res. 2008; 25 (11):2526–2533.
85 [85] Clarke JD, Dzierlenga AL, Nelson NR, Li H, Werts S, Goedken MJ, Cherrington NJ. Mechanism of altered metformin distribution in nonalcoholic steatohepatitis. Diabetes 2015; 64 (9):3305–3313.
86 [86] Schiöth HB, Boström A, Murphy SK, Erhart W, Hampe J, Moylan C, Mwinyi J. A targeted analysis reveals relevant shifts in the methylation and transcription of genes responsible for bile acid homeostasis and drug metabolism in non‐alcoholic fatty liver disease. BMC Genomics 2016; 17:462.
87 [87] García‐Calzón S, Perfilyev A, Männistö V, de Mello VD, Nilsson E, Pihlajamäki J, Ling C. Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin Epigenetics 2017; 9:102.
88 [88] Tanaka T, Hirota T, Ieiri I. Relationship between DNA methylation in the 5' CpG island of the SLC47A1 (Multidrug and Toxin Extrusion Protein MATE1) gene and interindividual variability in MATE1 expression in the human liver. Mol Pharmacol 2018; 93 (1):1–7.
89 [89] FDA U. Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers 2020 (2020). Accessed date: April 2, 2021.
90 [90] FDA U. Clinical Drug Interaction Studies — Cytochrome P450 Enzyme‐ and Transporter‐Mediated Drug Interactions Guidance for Industry. Center for Drug Evaluation and Research 2020.
91 [91] Shibata M, Toyoshima J, Kaneko Y, Oda K, Nishimura T. A drug‐drug interaction study to evaluate the impact of peficitinib on OCT1‐ and MATE1‐mediated transport of metformin in healthy volunteers. Eur J Clin Pharmacol 2020; 76 (8):1135–1141.
92 [92] Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, Goswami S, Stocker SL, Zhang X, Huang Y, Brett CM, Savic RM, Giacomini KM. The effect of famotidine, a MATE1‐selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet. 2016; 55 (6):711–721.
93 [93] Morrissey KM, Stocker SL, Chen EC, Castro RA, Brett CM, Giacomini KM. The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers. Clin Pharmacokinet 2016; 55 (4):495–506.
94 [94] Oh J, Chung H, Park SI, Yi SJ, Jang K, Kim AH, Yoon J, Cho JY, Yoon SH, Jang IJ, Yu KS, Chung JY. Inhibition of the multidrug and toxin extrusion (MATE) transporter by pyrimethamine increases the plasma concentration of metformin but does not increase antihyperglycaemic activity in humans. Diabetes Obes Metab 2016; 18 (1):104–108.
95 [95] Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, Inoue K, Yuasa H, Sugiyama Y. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 2011; 89 (6):837–844.
96 [96] Shen H, Yang Z, Zhao W, Zhang Y, Rodrigues AD. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos 2013; 41 (12):2095–2103.
97 [97] Yamazaki T, Desai A, Goldwater R, Han D, Lasseter KC, Howieson C, Akhtar S, Kowalski D, Lademacher C, Rammelsberg D, Townsend R. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, digoxin, metformin, and methotrexate in healthy subjects. Clin Pharmacol Drug Dev 2017; 6 (1):66–75.
98 [98] Turk D, Hanke N, Lehr T. A physiologically‐based pharmacokinetic model of trimethoprim for MATE1, OCT1, OCT2, and CYP2C8 drug‐drug‐gene interaction predictions. Pharmaceutics 2020; 12 (11):1074.
99 [99] Chang C, Hu Y, Hogan SL, Mercke N, Gomez M, O'Bryant C, Bowles DW, George B, Wen X, Aleksunes LM, Joy MS. Pharmacogenomic variants may influence the urinary excretion of novel kidney injury biomarkers in patients receiving cisplatin. Int J Mol Sci 2017; 18 (7):1333.
100 [100] Nakada T, Kudo T, Kume T, Kusuhara H, Ito K. Estimation of changes in serum creatinine and creatinine clearance caused by renal transporter inhibition in healthy subjects. Drug Metab Pharmacokinet 2019; 34 (4):233–238.
101 [101] Nakada T, Kudo T, Kume T, Kusuhara H, Ito K. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically‐based pharmacokinetic model. Drug Metab Pharmacokinet 2018; 33 (1):103–110.
102 [102] Ito S, Kusuhara H, Kumagai Y, Moriyama Y, Inoue K, Kondo T, Nakayama H, Horita S, Tanabe K, Yuasa H, Sugiyama Y. N‐methylnicotinamide is an endogenous probe for evaluation of drug‐drug interactions involving multidrug and toxin extrusions (MATE1 and MATE2‐K). Clin Pharmacol Ther 2012; 92 (5):635–641.
103 [103] Müller F, Pontones CA, Renner B, Mieth M, Hoier E, Auge D, Maas R, Zolk O, Fromm MF. N(1)‐methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin‐trimethoprim interaction. Eur J Clin Pharmacol 2015; 71 (1):85–94.
104 [104] Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, Yonezawa A, Katsura T, Kumagai Y, Yuasa H, Moriyama Y, Inui K, Kusuhara H, Sugiyama Y. Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res 2014; 31 (1):136–147.
105 [105] Miyake T, Kimoto E, Luo L, Mathialagan S, Horlbogen LM, Ramanathan R, Wood LS, Johnson JG, Le VH, Vourvahis M, Rodrigues AD, Muto C, Furihata K, Sugiyama Y, Kusuhara H. Identification of appropriate endogenous biomarker for risk assessment of multidrug and toxin extrusion protein‐mediated drug‐drug interactions in healthy volunteers. Clin Pharmacol Ther 2021; 109 (2):507–516.
106 [106] Chung JY, Cho SK, Kim TH, Kim KH, Jang GH, Kim CO, Park EM, Cho JY, Jang IJ, Choi JH. Functional characterization of MATE2‐K genetic variants and their effects on metformin pharmacokinetics. Pharmacogenet Genomics 2013; 23 (7):365–373.
107 [107] Grün B, Kiessling MK, Burhenne J, Riedel KD, Weiss J, Rauch G, Haefeli WE, Czock D. Trimethoprim‐metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol 2013; 76 (5):787–796.
108 [108] Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose‐lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 2009; 58 (3):745–749.
109 [109] Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet Genomics 2010; 20 (1):38–44.
110 [110] Dujic T, Zhou K, Yee SW, van Leeuwen N, de Keyser CE, Javorský M, Goswami S, Zaharenko L, Hougaard Christensen MM, Out M, Tavendale R, Kubo M, Hedderson MM, van der Heijden AA, Klimčáková L, Pirags V, Kooy A, Brøsen K, Klovins J, Semiz S, Tkáč I, Stricker BH, Palmer C, t Hart LM, Giacomini KM, Pearson ER. Variants in pharmacokinetic transporters and glycemic response to metformin: a metgen meta‐analysis. Clin Pharmacol Ther 2017; 101 (6):763–772.
111 [111] Chen Y, Teranishi K, Li S, Yee SW, Hesselson S, Stryke D, Johns SJ, Ferrin TE, Kwok P, Giacomini KM. Genetic variants in multidrug and toxic compound extrusion‐1, hMATE1, alter transport function. Pharmacogenomics J 2009; 9 (2):127–136.
112 [112] Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, Doi T, Inui K. Identification of multidrug and toxin extrusion (MATE1 and MATE2‐K) variants with complete loss of transport activity. J Hum Genet 2009; 54 (1):40–46.
113 [113] Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, Ramirez AH, Roden DM, Wilke RA, McCarty CA, Davis RL, Brett CM, Giacomini KM. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 2013; 93 (2):186–194.
114 [114] Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, Mefford JA, Hesselson SE, Schlessinger A, Jenkins G, Castro RA, Johns SJ, Stryke D, Sali A, Ferrin TE, Witte JS, Kwok PY, Roden DM, Wilke RA, McCarty CA, Davis RL, Giacomini KM. A common 5'‐UTR variant in MATE2‐K is associated with poor response to metformin. Clin Pharmacol Ther 2011; 90 (5):674–84.
115 [115] Moeez S, Khalid Z, Jalil F, Irfan M, Ismail M, Arif MA, Niazi R, Khalid S. Effects of SLC22A2 (rs201919874) and SLC47A2 (rs138244461) genetic variants on metformin pharmacokinetics in Pakistani T2DM patients. J Pak Med Assoc 2019; 69 (2):155–163.
116 [116] Raj GM, Mathaiyan J, Wyawahare M, Rao KS, Priyadarshini R. Genetic polymorphisms of multidrug and toxin extrusion proteins (MATE1 and MATE2) in South Indian population. Bioimpacts 2017; 7 (1):25–30.
117 [117] Raj GM, Mathaiyan J, Wyawahare M, Priyadarshini R. Lack of effect of the SLC47A1 and SLC47A2 gene polymorphisms on the glycemic response to metformin in type 2 diabetes mellitus patients. Drug Metab Pers Ther 2018; 33 (4):175–85.
118 [118] Phani NM, Vohra M, Kakar A, Adhikari P, Nagri SK, D'Souza SC, Umakanth S, Satyamoorthy K, Rai PS. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in Type 2 diabetes. Pharmacogenomics 2018; 19 (11):905–11.
119 [119] Xiao D, Guo Y, Li X, Yin JY, Zheng W, Qiu XW, Xiao L, Liu RR, Wang SY, Gong WJ, Zhou HH, Liu ZQ. The impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in Chinese type 2 diabetes patients. Int J Endocrinol 2016; 2016:4350712.
120 [120] Liang H, Xu W, Zhou L, Yang W, Weng J. Differential increments of basal glucagon‐like‐1 peptide concentration among SLC47A1 rs2289669 genotypes were associated with inter‐individual variability in glycaemic response to metformin in Chinese people with newly diagnosed Type 2 diabetes. Diabet Med 2017; 34 (7):987–92.
121 [121] Mousavi S, Kohan L, Yavarian M, Habib A. Pharmacogenetic variation of SLC47A1 gene and metformin response in type2 diabetes patients. Mol Biol Res Commun 2017; 6 (2):91–94.
122 [122] He R, Zhang D, Lu W, Zheng T, Wan L, Liu F, Jia W. SLC47A1 gene rs2289669 G>A variants enhance the glucose‐lowering effect of metformin via delaying its excretion in Chinese type 2 diabetes patients. Diabetes Res Clin Pract 2015; 109 (1):57–63.
123 [123] Naeije R, Degaute JP. Redistribution of cardiac output to the kidneys by tertatolol does not involve prostaglandins. Am J Hypertens 1989; 2 (11 Pt 2):241S–244S.
124 [124] Teft WA, Winquist E, Nichols AC, Kuruvilla S, Richter S, Parker C, Francis P, Trinnear M, Lukovic J, Bukhari N, Choi YH, Welch S, Palma DA, Yoo J, Kim RB. Predictors of cisplatin‐induced ototoxicity and survival in chemoradiation treated head and neck cancer patients. Oral Oncol 2019; 89:72–78.
125 [125] Qian CY, Zheng Y, Wang Y, Chen J, Liu JY, Zhou HH, Yin JY, Liu ZQ. Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP‐binding cassette subfamily C member 2 (ABCC2) with platinum‐based chemotherapy response and toxicity in non‐small cell lung cancer patients. Chin J Cancer 2016; 35 (1):85.
126 [126] Nakano K, Ando H, Kurokawa S, Hosohata K, Ushijima K, Takada M, Tateishi M, Yonezawa A, Masuda S, Matsubara K, Inui K, Morita T, Fujimura A. Association of decreased mRNA expression of multidrug and toxin extrusion protein 1 in peripheral blood cells with the development of flutamide‐induced liver injury. Cancer Chemother Pharmacol 2015; 75 (6):1191–1197.
127 [127] Ando H, Nakano K, Ushijima K, Kurokawa S, Washino S, Hosohata K, Morita T, Fujimura A. Influence of genetic polymorphisms of multidrug and toxin extrusion protein 1 on its mRNA expression in peripheral blood cells. J Pharmacol Sci 2016; 131 (2):138–40.
128 [128] Nies AT, Damme K, Kruck S, Schaeffeler E, Schwab M. Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 2016; 90 (7):1555–1584.
129 [129] Sauzay C, White‐Koning M, Hennebelle I, Deluche T, Delmas C, Imbs DC, Chatelut E, Thomas F. Inhibition of OCT2, MATE1 and MATE2‐K as a possible mechanism of drug interaction between pazopanib and cisplatin. Pharmacol Res 2016; 110:89–95.
130 [130] van der Velden M, Bilos A, van den Heuvel J, Rijpma SR, Hurkmans EGE, Sauerwein RW, Russel FGM, Koenderink JB. Proguanil and cycloguanil are organic cation transporter and multidrug and toxin extrusion substrates. Malar J 2017; 16 (1):422.
131 [131] Shen H, Yao M, Sinz M, Marathe P, Rodrigues AD, Zhu M. Renal excretion of dabigatran: the potential role of Multidrug and Toxin Extrusion (MATE) proteins. Mol Pharm 2019; 16 (9):4065–4076.
132 [132] Yang X, Ma Z, Zhou S, Weng Y, Lei H, Zeng S, Li L, Jiang H. Multiple drug transporters are involved in renal secretion of entecavir. Antimicrob Agents Chemother 2016; 60 (10):6260–6270.
133 [133] Shen H, Liu T, Jiang H, Titsch C, Taylor K, Kandoussi H, Qiu X, Chen C, Sukrutharaj S, Kuit K, Mintier G, Krishnamurthy P, Fancher RM, Zeng J, Rodrigues AD, Marathe P, Lai Y. Cynomolgus monkey as a clinically relevant model to study transport involving renal organic cation transporters: in vitro and in vivo evaluation. Drug Metab Dispos 2016; 44 (2):238–249.
134 [134] Toyama K, Yonezawa A, Tsuda M, Masuda S, Yano I, Terada T, Osawa R, Katsura T, Hosokawa M, Fujimoto S, Inagaki N, Inui K. Heterozygous variants of multidrug and toxin extrusions (MATE1 and MATE2‐K) have little influence on the disposition of metformin in diabetic patients. Pharmacogenet Genomics 2010; 20 (2):135–138.
135 [135] Ieiri I. Pharnacogenomics of Drug Transporters: Clinical Implications. In: Nicholls G, Youdim K, editors. Drug Transporters: Recent Advances and Emerging Technologies. 2: Royal Society of Chemistry; 2016. p. 114–142.