Читать книгу Drug Transporters - Группа авторов - Страница 75
REFERENCES
Оглавление1 [1] Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007; 24(7):1227–1251.
2 [2] Koepsell H. Organic cation transporters in health and disease. Pharmacol Rev 2020; 72(1):253–319.
3 [3] Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1‐3 and SLC46A1) and folate receptors. Mol Aspects Med 2013; 34(2–3):373–385.
4 [4] Engel K, Zhou M, Wang J. Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 2004; 279(48):50042–50049.
5 [5] Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. The EMBL‐EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47(W1):W636–W641.
6 [6] Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 2002; 13(4):866–874.
7 [7] Wagner DJ, Hu T, Wang J. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol Res 2016; 111:237–246.
8 [8] Lin CJ, Tai Y, Huang MT, Tsai YF, Hsu HJ, Tzen KY, Liou HH. Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood‐brain barrier and MPTP‐induced dopaminergic toxicity in rodents. J Neurochem 2010; 114(3):717–727.
9 [9] Lee N, Duan H, Hebert MF, Liang CJ, Rice KM, Wang J. Taste of a pill: organic cation transporter‐3 (OCT3) mediates metformin accumulation and secretion in salivary glands. J Biol Chem 2014; 289(39):27055–27064.
10 [10] Dakal TC, Kumar R, Ramotar D. Structural modeling of human organic cation transporters. Comput Biol Chem 2017; 68:153–163.
11 [11] Koepsell H. Substrate recognition and translocation by polyspecific organic cation transporters. Biol Chem 2011; 392(1–2):95–101.
12 [12] Volk C. OCTs, OATs, and OCTNs: structure and function of the polyspecific organic ion transporters of the SLC22 family. Wiley Interdiscip Rev Membr Transp Signal 2014; 3(1):1–13.
13 [13] Harper JN, Wright SH. Multiple mechanisms of ligand interaction with the human organic cation transporter, OCT2. Am J Physiol Renal Physiol 2013; 304(1):F56–F67.
14 [14] Egenberger B, Gorboulev V, Keller T, Gorbunov D, Gottlieb N, Geiger D, Mueller TD, Koepsell H. A substrate binding hinge domain is critical for transport‐related structural changes of organic cation transporter 1. J Biol Chem 2012; 287(37):31561–31573.
15 [15] Chien HC, Zur AA, Maurer TS, Yee SW, Tolsma J, Jasper P, Scott DO, Giacomini KM. Rapid method to determine intracellular drug concentrations in cellular uptake assays: application to metformin in organic cation transporter 1‐transfected human embryonic kidney 293 cells. Drug Metab Dispos 2016; 44(3):356–364.
16 [16] Morrissey KM, Wen CC, Johns SJ, Zhang L, Huang SM, Giacomini KM. The UCSF‐FDA TransPortal: a public drug transporter database. Clin Pharmacol Ther 2012; 92(5):545–546.
17 [17] Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34(2–3):413–435.
18 [18] Chen L, Shu Y, Liang X, Chen EC, Yee SW, Zur AA, Li S, Xu L, Keshari KR, Lin MJ, Chien HC, Zhang Y, Morrissey KM, Liu J, Ostrem J, Younger NS, Kurhanewicz J, Shokat KM, Ashrafi K, Giacomini KM. OCT1 is a high‐capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci U S A 2014; 111(27):9983–9988.
19 [19] Dresser MJ, Gray AT, Giacomini KM. Kinetic and selectivity differences between rodent, rabbit, and human organic cation transporters (OCT1). J Pharmacol Exp Ther 2000; 292(3):1146–1152.
20 [20] Kim HI, Raffler J, Lu W, Lee JJ, Abbey D, Saleheen D, Rabinowitz JD, Bennett MJ, Hand NJ, Brown C, Rader DJ. Fine mapping and functional analysis reveal a role of SLC22A1 in acylcarnitine transport. Am J Hum Genet 2017; 101(4):489–502.
21 [21] Hyrsova L, Smutny T, Carazo A, Moravcik S, Mandikova J, Trejtnar F, Gerbal‐Chaloin S, Pavek P. The pregnane X receptor down‐regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for (“squelching”) SRC‐1 coactivator. Br J Pharmacol 2016; 173(10):1703–1715.
22 [22] Hyrsova L, Smutny T, Trejtnar F, Pavek P. Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation. Drug Metab Rev 2016; 48(2):139–158.
23 [23] Ciarimboli G, Deuster D, KNIEF A, Sperling M, Holtkamp M, Edemir B, Pavenstädt H, Lanvers‐Kaminsky C, Am Zehnhoff‐Dinnesen A, Schinkel AH, Koepsell H, Jürgens H, Schlatter E. Regulation of the human organic cation transporter hOCT1. J Cell Physiol 2004; 201(3):420–428.
24 [24] Jonker JW, Wagenaar E, Mol CA, Buitelaar M, Koepsell H, Smit JW, Schinkel AH. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol Cell Biol 2001; 21(16):5471–5477.
25 [25] Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002; 302(2):510–515.
26 [26] Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003; 63(4):844–848.
27 [27] Morse BL, Kolur A, Hudson LR, Hogan AT, Chen LH, Brackman RM, Sawada GA, Fallon JK, Smith PC, Hillgren KM. Pharmacokinetics of organic cation transporter 1 (OCT1) substrates in Oct1/2 knockout mice and species difference in hepatic OCT1‐mediated uptake. Drug Metab Dispos 2020; 48(2):93–105.
28 [28] Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V, Mornhinweg E, Keil A, Eichelbaum M, Koepsell H. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 2002; 12(8):591–595.
29 [29] Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke D, Kawamoto M, Johns SJ, Deyoung J, Carlson E, Ferrin TE, Herskowitz I, Giacomini KM, Investigators POMT. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci U S A 2003; 100(10):5902–5907.
30 [30] Arimany‐Nardi C, Koepsell H, Pastor‐Anglada M. Role of SLC22A1 polymorphic variants in drug disposition, therapeutic responses, and drug‐drug interactions. Pharmacogenomics J 2015; 15(6):473–487.
31 [31] Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, Morris AP, Poustchi H, Newman WG, Midha V, Orchard TR, Vahedi H, Sood A, Sung JY, Malekzadeh R, Westra HJ, Yamazaki K, Yang SK, Barrett JC, Alizadeh BZ, Parkes M, Bk T, Daly MJ, Kubo M, Anderson CA, Weersma RK, Consortium IMSG, Consortium IIG. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015; 47(9):979–986.
32 [32] Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117(5):1422–1431.
33 [33] Chen L, Takizawa M, Chen E, Schlessinger A, Segenthelar J, Choi JH, Sali A, Kubo M, Nakamura S, Iwamoto Y, Iwasaki N, Giacomini KM. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther 2010; 335(1):42–50.
34 [34] Yee SW, Brackman DJ, Ennis EA, Sugiyama Y, Kamdem LK, Blanchard R, Galetin A, Zhang L, Giacomini KM. Influence of transporter polymorphisms on drug disposition and response: a perspective from the international transporter consortium. Clin Pharmacol Ther 2018; 104(5):803–817.
35 [35] Tzvetkov MV, Saadatmand AR, Bokelmann K, Meineke I, Kaiser R, Brockmöller J. Effects of OCT1 polymorphisms on the cellular uptake, plasma concentrations and efficacy of the 5‐HT(3) antagonists tropisetron and ondansetron. Pharmacogenomics J 2012; 12(1):22–29.
36 [36] Liang X, Yee SW, Chien HC, Chen EC, Luo Q, Zou L, Piao M, Mifune A, Chen L, Calvert ME, King S, Norheim F, Abad J, Krauss RM, Giacomini KM. Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content. PLoS Biol 2018; 16(4):e2002907.
37 [37] Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek‐Gliszczynski MJ, Zhang L, Consortium IT. Membrane transporters in drug development. Nat Rev Drug Discov 2010; 9(3):215–236.
38 [38] Giacomini KM, Galetin A, Huang SM. The international transporter consortium: summarizing advances in the role of transporters in drug development. Clin Pharmacol Ther 2018; 104(5):766–771.
39 [39] Chu X, Chan GH, Evers R. Identification of endogenous biomarkers to predict the propensity of drug candidates to cause hepatic or renal transporter‐mediated drug‐drug interactions. J Pharm Sci 2017; 106(9):2357–2367.
40 [40] Wright SH. Molecular and cellular physiology of organic cation transporter 2. Am J Physiol Renal Physiol 2019; 317(6):F1669–F1679.
41 [41] Urakami Y, Okuda M, Saito H, Inui K. Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett 2000; 473(2):173–176.
42 [42] Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 2003; 23(21):7902–7908.
43 [43] Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstädt H, Lanvers‐Kaminsky C, Am Zehnhoff‐Dinnesen A, Schinkel AH, Koepsell H, Jürgens H, Schlatter E. Organic cation transporter 2 mediates cisplatin‐induced oto‐ and nephrotoxicity and is a target for protective interventions. Am J Pathol 2010; 176(3):1169–1180.
44 [44] Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, Deyoung J, Taylor T, Clark AG, Herskowitz I, Giacomini KM, Investigators POMT. Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 2002; 12(5):395–405.
45 [45] Fujita T, Urban TJ, Leabman MK, Fujita K, Giacomini KM. Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J Pharm Sci 2006; 95(1):25–36.
46 [46] Zwart R, Verhaagh S, Buitelaar M, Popp‐Snijders C, Barlow DP. Impaired activity of the extraneuronal monoamine transporter system known as uptake‐2 in Orct3/Slc22a3‐deficient mice. Mol Cell Biol 2001; 21(13):4188–4196.
47 [47] Vollmar J, Lautem A, Closs E, Schuppan D, Kim YO, Grimm D, Marquardt JU, Fuchs P, Straub BK, Schad A, Gründemann D, Schattenberg JM, Gehrke N, Wörns MA, Baumgart J, Galle PR, Zimmermann T. Loss of organic cation transporter 3 (Oct3) leads to enhanced proliferation and hepatocarcinogenesis. Oncotarget 2017; 8(70):115667–115680.
48 [48] Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S. Altered aminergic neurotransmission in the brain of organic cation transporter 3‐deficient mice. J Neurochem 2008; 106(3):1471–1482.
49 [49] Wultsch T, Grimberg G, Schmitt A, Painsipp E, Wetzstein H, Breitenkamp AF, Gründemann D, Schömig E, Lesch KP, Gerlach M, Reif A. Decreased anxiety in mice lacking the organic cation transporter 3. J Neural Transm (Vienna) 2009; 116(6):689–697.
50 [50] Eeles RA, Kote‐Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI, Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern‐Jones AT, Hall AL, O’Brien LT, Gehr‐Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF, Collaborators UGPCS, Oncology BAOUSSO, Collaborators UPS. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008; 40(3):316–321.
51 [51] Cui R, Okada Y, Jang SG, Ku JL, Park JG, Kamatani Y, Hosono N, Tsunoda T, Kumar V, Tanikawa C, Kamatani N, Yamada R, Kubo M, Nakamura Y, Matsuda K. Common variant in 6q26‐q27 is associated with distal colon cancer in an Asian population. Gut 2011; 60(6):799–805.
52 [52] Lazar A, Walitza S, Jetter A, Gerlach M, Warnke A, Herpertz‐Dahlmann B, Gründemann D, Grimberg G, Schulz E, Remschmidt H, Wewetzer C, Schömig E. Novel mutations of the extraneuronal monoamine transporter gene in children and adolescents with obsessive‐compulsive disorder. Int J Neuropsychopharmacol 2008; 11(1):35–48.
53 [53] Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH. Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol Genet Metab 2000; 71(4):581–590.
54 [54] Swier LJ, Monjas L, Guskov A, de Voogd AR, Erkens GB, Slotboom DJ, Hirsch AK. Structure‐based design of potent small‐molecule binders to the S‐component of the ECF transporter for thiamine. Chembiochem 2015; 16(5):819–826.
55 [55] Liang X, Chien HC, Yee SW, Giacomini MM, Chen EC, Piao M, Hao J, Twelves J, Lepist EI, Ray AS, Giacomini KM. Metformin is a substrate and inhibitor of the human thiamine transporter, THTR‐2 (SLC19A3). Mol Pharm 2015; 12(12):4301–4310.
56 [56] Giacomini MM, Hao J, Liang X, Chandrasekhar J, Twelves J, Whitney JA, Lepist EI, Ray AS. Interaction of 2,4‐diaminopyrimidine‐containing drugs including fedratinib and trimethoprim with thiamine transporters. Drug Metab Dispos 2017; 45(1):76–85.
57 [57] Zhang Q, Zhang Y, Diamond S, Boer J, Harris JJ, Li Y, Rupar M, Behshad E, Gardiner C, Collier P, Liu P, Burn T, Wynn R, Hollis G, Yeleswaram S. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke's encephalopathy. Drug Metab Dispos 2014; 42(10):1656–1662.
58 [58] Vora B, Green EAE, Khuri N, Ballgren F, Sirota M, Giacomini KM. Drug‐nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR‐2 (SLC19A3). Am J Clin Nutr 2020; 111(1):110–121.
59 [59] Mimura Y, Yasujima T, Ohta K, Inoue K, Yuasa H. Functional identification of plasma membrane monoamine transporter (PMAT/SLC29A4) as an atenolol transporter sensitive to flavonoids contained in apple juice. J Pharm Sci 2017; 106(9):2592–2598.
60 [60] Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton‐stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 2007; 35(10):1956–1962.
61 [61] Duan H, Hu T, Foti RS, Pan Y, Swaan PW, Wang J. Potent and selective inhibition of plasma membrane monoamine transporter by HIV protease inhibitors. Drug Metab Dispos 2015; 43(11):1773–1780.
62 [62] Reidling JC, Lambrecht N, Kassir M, Said HM. Impaired intestinal vitamin B1 (thiamin) uptake in thiamin transporter‐2‐deficient mice. Gastroenterology 2010; 138(5):1802–1809.
63 [63] Oishi K, Hofmann S, Diaz GA, Brown T, Manwani D, Ng L, Young R, Vlassara H, Ioannou YA, Forrest D, Gelb BD. Targeted disruption of Slc19a2, the gene encoding the high‐affinity thiamin transporter Thtr‐1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum Mol Genet 2002; 11(23):2951–2960.
64 [64] Duan H, Wang J. Impaired monoamine and organic cation uptake in choroid plexus in mice with targeted disruption of the plasma membrane monoamine transporter (Slc29a4) gene. J Biol Chem 2013; 288(5):3535–3544.
65 [65] Gilman TL, George CM, Vitela M, Herrera‐Rosales M, Basiouny MS, Koek W, Daws LC. Constitutive plasma membrane monoamine transporter (PMAT, Slc29a4) deficiency subtly affects anxiety‐like and coping behaviours. Eur J Neurosci 2018; 48(1): 1706–1716.
66 [66] Wei R, Gust SL, Tandio D, Maheux A, Nguyen KH, Wang J, Bourque S, Plane F, Hammond JR. Deletion of murine slc29a4 modifies vascular responses to adenosine and 5‐hydroxytryptamine in a sexually dimorphic manner. Physiol Rep 2020; 8(5):e14395.
67 [67] Online Mendelian Inheritance in Man. OMIM® [Internet]. Available at https://omim.org/. Accessed December 3, 2020.
68 [68] Xian X, Liao L, Shu W, Li H, Qin Y, Yan J, Luo J, Lin FQ. A novel mutation of SLC19A2 in a Chinese Zhuang ethnic family with thiamine‐responsive megaloblastic anemia. Cell Physiol Biochem 2018; 47(5):1989–1997.
69 [69] Scharfe C, Hauschild M, Klopstock T, Janssen AJ, Heidemann PH, Meitinger T, Jaksch M. A novel mutation in the thiamine responsive megaloblastic anaemia gene SLC19A2 in a patient with deficiency of respiratory chain complex I. J Med Genet 2000; 37(9):669–673.
70 [70] Subramanian VS, Marchant JS, Said HM. Biotin‐responsive basal ganglia disease‐linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. Am J Physiol Cell Physiol 2006; 291(5):C851–C859.
71 [71] Ozand PT, Gascon GG, Al Essa M, Joshi S, Al Jishi E, Bakheet S, Al Watban J, Al‐Kawi MZ, Dabbagh O. Biotin‐responsive basal ganglia disease: a novel entity. Brain 1998; 121 (Pt 7):1267–1279.
72 [72] Vlasova TI, Stratton SL, Wells AM, Mock NI, Mock DM. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr 2005; 135(1):42–47.
73 [73] Kono S, Miyajima H, Yoshida K, Togawa A, Shirakawa K, Suzuki H. Mutations in a thiamine‐transporter gene and Wernicke's‐like encephalopathy. N Engl J Med 2009; 360(17):1792–1794.
74 [74] Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rüfenacht V, Meili D, Bobrowski E, Philippe P, Nava C, Van Maldergem L, Bruggmann R, Walitza S, Wang J, Grünblatt E, Thöny B. Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 2014; 5:43.
75 [75] Dawed AY, Zhou K, van Leeuwen N, Mahajan A, Robertson N, Koivula R, Elders PJM, Rauh SP, Jones AG, Holl RW, Stingl JC, Franks PW, Mccarthy MI, ‘T Hart LM, Pearson ER, Consortium ID. Variation in the plasma membrane monoamine transporter (PMAT) (Encoded by SLC29A4) and organic cation transporter 1 (OCT1) (Encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes: an IMI DIRECT study. Diabetes Care 2019; 42(6):1027–1033.
76 [76] Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H. Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 2002; 277(39):36262–36271.
77 [77] Eraly SA, Nigam SK. Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters. Biochem Biophys Res Commun 2002; 297(5):1159–1166.
78 [78] Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH, Wu W, Nigam SK. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure‐function implications and analysis of sequence motifs. PLoS One 2015; 10(11):e0140569.
79 [79] Yee SW, Buitrago D, Stecula A, Ngo HX, Chien HC, Zou L, Koleske ML, Giacomini KM. Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies. FASEB J 2020; 34(12):15734–15752.
80 [80] Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, Tsuji A. Cloning and characterization of a novel human pH‐dependent organic cation transporter, OCTN1. FEBS Lett 1997; 419(1):107–111.
81 [81] Urban TJ, Yang C, Lagpacan LL, Brown C, Castro RA, Taylor TR, Huang CC, Stryke D, Johns SJ, Kawamoto M, Carlson EJ, Ferrin TE, Burchard EG, Giacomini KM. Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenet Genomics 2007; 17(9):773–782.
82 [82] Eder K, Ringseis R. The role of peroxisome proliferator‐activated receptor alpha in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628(1–3):1–5.
83 [83] Kato Y, Sai Y, Yoshida K, Watanabe C, Hirata T, Tsuji A. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol Pharmacol 2005; 67(3):734–743.
84 [84] Kato Y, Kubo Y, Iwata D, Kato S, Sudo T, Sugiura T, Kagaya T, Wakayama T, Hirayama A, Sugimoto M, Sugihara K, Kaneko S, Soga T, Asano M, Tomita M, Matsui T, Wada M, Tsuji A. Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm Res 2010; 27(5):832–840.
85 [85] Shinozaki Y, Furuichi K, Toyama T, Kitajima S, Hara A, Iwata Y, Sakai N, Shimizu M, Kaneko S, Isozumi N, Nagamori S, Kanai Y, Sugiura T, Kato Y, Wada, T. Impairment of the carnitine/organic cation transporter 1‐ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. Kidney Int 2017; 92(6):1356–1369.
86 [86] Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros‐Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen‐Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O’Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, Van Der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo‐De‐Santa‐Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido‐Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 2016; 167(5):1415–1429.e19.
87 [87] Draisma HHM, Pool R, Kobl M, Jansen R, Peters en AK, Vaarhorst AAM, Yet I, Haller T, Demirkan A, Esko T, Zhu G, Böhringer S, Beekman M, Van Klinken JB, Römisch‐Margl W, Prehn C, Adamski J, De Craen AJM, Van Leeuwen EM, Amin N, Dharuri H, Westra HJ, Franke L, De Geus EJC, Hottenga JJ, Willemsen G, Henders AK, Montgomery GW, Nyholt DR, Whitfield JB, Penninx BW, Spector TD, Metspalu A, Slagboom PE, Van Dijk KW, ‘T Hoen PAC, Strauch K, Martin NG, Van Ommen GB, Illig T, Bell JT, Mangino M, Suhre K, Mccarthy MI, Gieger C, Isaacs A, Van Duijn CM, Boomsma DI. Genome‐wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat Commun 2015; 6:7208.
88 [88] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer‐Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce‐Hoffman E, Zappala Z, O’Donnell‐Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano‐Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, Macarthur DG, Consortium GAD. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581(7809):434–443.
89 [89] Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, Brett CM, Burchard EG, Giacomini KM. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 2008; 83(3):416–421.
90 [90] Kou L, Sun R, Ganapathy V, Yao Q, Chen R. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets 2018; 22(8):715–726.
91 [91] Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, Zuo Z, Loos WJ, Sparreboom A. Zuo Z, Loos WJ, Sparreboom A. Cisplatin‐induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res 2010; 16(19):4789–4799.
92 [92] D'Argenio G, Petillo O, Margarucci S, Torpedine A, Calarco A, Koverech A, Boccia A, Paolella G, Peluso G. Colon OCTN2 gene expression is up‐regulated by peroxisome proliferator‐activated receptor gamma in humans and mice and contributes to local and systemic carnitine homeostasis. J Biol Chem 2010; 285(35):27078–27087.
93 [93] Li P, Wang Y, Luo J, Zeng Q, Wang M, Bai M, Zhou H, Wang J, Jiang H. Downregulation of OCTN2 by cytokines plays an important role in the progression of inflammatory bowel disease. Biochem Pharmacol 2020; 178:114115.
94 [94] Koizumi T, Nikaido H, Hayakawa J, Nonomura A, Yoneda T. Infantile disease with microvesicular fatty infiltration of viscera spontaneously occurring in the C3H‐H‐2(0) strain of mouse with similarities to Reye's syndrome. Lab Anim 1988; 22(1):83–87.
95 [95] Yokogawa K, Higashi Y, Tamai I, Nomura M, Hashimoto N, Nikaido H, Hayakawa J, Miyamoto K, Tsuji A. Decreased tissue distribution of L‐carnitine in juvenile visceral steatosis mice. J Pharmacol Exp Ther 1999; 289(1):224–230.
96 [96] Shekhawat PS, Srinivas SR, Matern D, Bennett MJ, Boriack R, George V, Xu H, Prasad PD, Roon P, Ganapathy V. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine‐deficient jvs (OCTN2(−/−)) mice. Mol Genet Metab 2007; 92(4):315–324.
97 [97] Longo N. Primary carnitine deficiency and newborn screening for disorders of the carnitine cycle. Ann Nutr Metab 2016; 68 Suppl 3:5–9.
98 [98] Guevara‐Campos J, González‐Guevara L, Guevara‐González J, Cauli O. First case report of primary carnitine deficiency manifested as intellectual disability and autism spectrum disorder. Brain Sci 2019; 9(6):137.
99 [99] Ferdinandusse S, Te Brinke H, Ruiter JPN, Haasjes J, Oostheim W, van Lenthe H, Ijlst L, Ebberink MS, Wanders RJA, Vaz FM, Waterham HR. A mutation creating an upstream translation initiation codon in SLC22A5 5'UTR is a frequent cause of primary carnitine deficiency. Hum Mutat 2019; 40(10):1899–1904.
100 [100] Long T, Hicks M, Yu HC, Biggs WH, Kirkness EF, Menni C, Zierer J, Small KS, Mangino M, Messier H, Brewerton S, Turpaz Y, Perkins BA, Evans AM, Miller LA, Guo L, Caskey CT, Schork NJ, Garner C, Spector TD, Venter JC, Telenti A. Whole‐genome sequencing identifies common‐to‐rare variants associated with human blood metabolites. Nat Genet 2017; 49(4):568–578.
101 [101] Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, Ghorbani A, Shi X, Helenius IT, O’Donnell CJ, Souza AL, Deik A, Pierce KA, Bullock K, Walford GA, Vasan RS, Florez JC, Clish C, Yeh JR, Wang TJ, Gerszten RE. A genome‐wide association study of the human metabolome in a community‐based cohort. Cell Metab 2013; 18(1):130–143.
102 [102] Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet 2019; 104(1):65–75.
103 [103] Chmielewska K, Dzierzbicka K, Inkielewicz‐Stępniak I, Przybyłowska M. Therapeutic potential of carnosine and its derivatives in the treatment of human diseases. Chem Res Toxicol 2020; 33(7):1561–1578.
104 [104] Zhu G, Qian M, Lu L, Chen Y, Zhang X, Wu Q, Liu Y, Bian Z, Yang Y, Guo S, Wang J, Pan Q, Sun F. O‐GlcNAcylation of YY1 stimulates tumorigenesis in colorectal cancer cells by targeting SLC22A15 and AANAT. Carcinogenesis 2019; 40(9):1121–1131.
105 [105] Aouida M, Poulin R, Ramotar D. The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin‐A5. J Biol Chem 2010; 285(9):6275–6284.
106 [106] Sato N, Ito K, Onogawa T, Akahira J, Unno M, Abe T, Niikura H, Yaegashi N. Expression of organic cation transporter SLC22A16 in human endometria. Int J Gynecol Pathol 2007; 26(1):53–60.
107 [107] Wu Y, Hurren R, MacLean N, Gronda M, Jitkova Y, Sukhai MA, Minden MD, Schimmer AD. Carnitine transporter CT2 (SLC22A16) is over‐expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis 2015; 20(8):1099–1108.
108 [108] Lal S, Wong ZW, Jada SR, Xiang X, Chen Shu X, Ang PC, Figg WD, Lee EJ, Chowbay B. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics 2007; 8(6):567–575.
109 [109] Januszewicz E, Pajak B, Gajkowska B, Samluk L, Djavadian RL, Hinton BT, Nałecz KA. Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up‐regulated by peroxisome proliferators‐activator receptor agonist. Int J Biochem Cell Biol 2009; 41(12):2599–2609.
110 [110] Scalise M, Galluccio M, Pochini L, Indiveri C. Over‐expression in Escherichia coli, purification and reconstitution in liposomes of the third member of the OCTN sub‐family: the mouse carnitine transporter OCTN3. Biochem Biophys Res Commun 2012; 422(1):59–63.
111 [111] Durán JM, Peral MJ, Calonge ML, Ilundáin AA. OCTN3: a Na+ – independent L – carnitine transporter in enterocytes basolateral membrane. J Cell Physiol 2005; 202(3):929–935.