Читать книгу Animal Proteins - Hugh Garner Bennett - Страница 3
INTRODUCTION
ОглавлениеProteins are organic compounds of natural origin, being found in plants and in animals, though much more plentifully in the latter. They are compounds of great complexity of composition, and of very high molecular weight. The constitution of none of them is fully understood, but although there are a great number of different individual proteids, they present typical resemblances and divergences which serve to differentiate them from other groups of organic bodies, and also from one another.
Proteins resemble one another in both proximate and ultimate analysis. They contain the usual elements in organic compounds, but in proportions which do not vary over very wide limits. This range of variation is given approximately below:—
Element. | Per cent. | ||
Carbon | 49 | to | 55 |
Hydrogen | 6.4 | to | 7.3 |
Oxygen | 17 | to | 26 |
Nitrogen | 13 | to | 19 |
Sulphur | 0.3 | to | 3.0 |
The most characteristic feature of the protein group is the amount of nitrogen usually present. This is generally nearer the higher limit, seldom falling below 15 per cent. This range for the nitrogen content is determined largely by the nature of constituent groups which go to form the proteid molecule. Roughly speaking, proteins consist of chains of amido-acids and acid amides with smaller proportions of aromatic groups, carbohydrate groups and thio compounds attached. In these chains an acid radical may combine with the amido group of another amido acid, the acid group of the latter combining with an amido group of another amido acid, and so on. Hydrogen may be substituted in these chains by alkyl or aromatic groups. There is obviously infinite possibility of variation in constitution for compounds of this character, the general nature of which varies very little. Practically all of the proteins are found in the colloid state, and this makes them very difficult to purify and renders the ultimate analysis in many cases doubtful. It is, for example, often difficult to ascertain their moisture content, for many are easily hydrolyzed with water only, and many part easily with the elements of water, whilst on the other hand many are lyophile colloids and practically cannot be dehydrated or dried. A few, such as gelatin and some albumins, have been crystallized.
The constituent groups have been investigated chiefly by hydrolytic methods. The chains of amido acids are split up during hydrolysis, and individual amido acids may thus be separated. The hydrolysis may be assisted either by acids, alkalies or ferments, but follows a different course according to the nature of the assistant. Under approximately constant conditions of hydrolysis, the products obtained are in approximately constant proportions, and this fact has been utilized by Van Slyke in devising a method of proximate analysis. It is not possible in this volume to enter deeply into the constitution of the different proteids. Reference must be made to works on pure chemistry, especially to those on advanced organic chemistry. It will be interesting, however, to mention some of the amido acids and groups commonly occurring in proteids. These comprise ornithine (1:4 diamido valeric acid), lysine (1:5 diamido-caproic acid), arginine (1 amido, 4 guanidine valeric acid), histidine, glycine (amidoacetic acid), alanine (amido propionic acid), amido-valeric acid (amido-iso-caproic acid), liacine, pyrollidine carboxylic acid, aspartic acid, glutamic acid (amido-glutaric acid), phenyl-alanine, serine (hydroxy-amido propionic acid), purine derivatives (e.g. guanine), indol derivatives (e.g. tryptophane and skatol acetic acid), cystine (a thioserine anhydride), glucosamine, and urea.
There are a few general reactions which are typical of all proteins, and which can usually be traced to definite groupings in the molecule. Amongst these is the biuret reaction: a pink colour obtained by adding a trace of copper sulphate and an excess of caustic soda. This is caused by the biuret, NH(CONH2)2 radical or by similar diacidamide groups, e.g. malonamide, oxamide, glycine amide. Another general reaction is with "Millon's reagent," a solution of mercuric nitrate containing nitrous fumes. On warming the proteid with this reagent, a curdy pink precipitate or a red colour is obtained. This reaction is caused by the tyrosine group (p. oxy α amido phenyl-propionic acid). Another general reaction is to boil the protein with 1:2 nitric acid for some days. A yellow flocculent precipitate of "xanthoproteic acid" is obtained, and this dissolves in ammonia and caustic alkalies with a brown or orange-red colour. Another characteristic of proteins is that on dry distillation they yield mixtures of pyridine C5H5N, pyrrol C4H5N, and their derivatives.
On the subdivision, classification and nomenclature of the proteins much ink has been spilled, and it is impossible in this volume to go into the various systems which have been suggested. It should be noted, however, that some writers habitually use the terms "proteid" or "albuminoid" as synonyms for protein. The classification of proteins adopted in this work is used because it is the most suitable for a volume on industrial chemistry and has the additional merits that it is simple and is already used in several standard works on industrial chemistry. It is based upon the behaviour of the proteins towards water, a matter of obvious moment in manufacturing processes. On this basis proteins may be divided into albumins, keratins and gelatins.
Cold water dissolves the albumins, does not affect the keratins, and only swells the gelatins. The behaviour in hot water confirms and elaborates the classification. When heated in water, the albumins coagulate at temperatures of 70°-75° C., the gelatins (if swollen) dissolve readily, whilst the keratins only dissolve at temperatures above 100° C. Albumins and keratins may be distinguished also from gelatins by adding acetic acid and potassium ferrocyanide to their aqueous solutions. Albumins and keratins give a precipitate, gelatins do not. Another distinguishing reaction is to boil with alcohol, wash with ether, and heat with hydrochloric acid (S.G. 1.2). Albumins give a violet colour, keratins and gelatins do not.
Albumins may be first discussed. They are typified by the casein of milk and by white of egg. Their solutions in water are faintly alkaline, optically active, and lævorotatory. They are coagulated by heat and also by mineral acids, alcohol, and by many poisons. The temperature of coagulation (usually about 72° C.) is affected by mineral salts, the effect being in lyotrope order (see Part V., Section I.). The coagulated albumin behaves in most respects like a keratin. Some of the albumins (globulins) are, strictly speaking, not soluble in cold water, but readily dissolve in weak solutions of salt. The albumins are coagulated from these solutions, as usual, when heated. Into this special class fall myosin (of the muscles), fibrinogen (of the blood) and vitellin (of egg yolk). By a gentle or limited hydrolysis of the albumins with dilute acids in the cold, a group of compounds called albuminates are obtained. They dissolve in either acids or alkalies, and are precipitated by exact neutralization. They may also be "salted" out by adding sodium chloride or magnesium sulphate. They are not coagulated by heat. After further hydrolysis with either acids, alkalies or ferments, very soluble compounds are obtained called albumin peptones or albumoses. These are soluble in alkalies, acids and water, and are readily hydrolyzed further into amido acids and acid amides. They are very similar to the peptones obtained from keratins and gelatins. They are not coagulated by heat.
Keratins are typified by the hair of animals. They soften somewhat in cold water and even more in hot water, but are not dissolved until digested for some time at temperatures exceeding 100° C. With some keratins, however, the cystine group is to some extent easily split off by warm water, and on boiling with water hydrogen sulphide is evolved. The sulphur content of keratins is often greater than the average for proteids. All keratins are dissolved with great readiness by solutions containing sulphydrates and hydrates, e.g. a solution of sodium sulphide. In solutions of the hydrates of the alkali and alkaline earth metals, keratins behave differently. Some dissolve with great ease, some with difficulty, some only on heating and some not even if digested with hot caustic soda. They are dissolved (with hydrolysis) by heating with mineral acids, yielding peptones and eventually amido acids, acid amides, etc. Many keratins have a comparatively low content of nitrogen.
Gelatins are very difficult to distinguish from one another, their behaviour being closely similar to reagents. They are also very readily hydrolyzed even with water, and the products of hydrolysis are even more similar. The gelatins are known together, commercially, under the general name of gelatine. Gelatins of different origin, however, have undoubtedly a different composition, the nitrogen content being variable. If the gelatins are not bleached whilst they are being manufactured into commercial gelatine, they are called "glue." Gelatine is colourless, transparent, devoid of taste and smell. It is usually brittle. Its S.G. is about 1.42, and it melts at 140° C. and decomposes. It is insoluble in organic solvents. When swelling in cold water it may absorb up to 12 times its own weight of water. The swollen product is called a "jelly." Jellies easily melt on heating and a colloidal solution of gelatine is obtained. This "sets" again to a jelly on cooling, even if only 1 per cent. gelatin (or less) be present. The solution is optically active and lævorotatory, but with very variable specific rotation. Some observers have thought that the different gelatins have different specific rotations and may so be distinguished. Gelatins are precipitated from solutions by many reagents, such as alcohol, formalin, quinone, metaphosphoric acid, tannins, and many salt solutions, e.g. those of aluminium, chromium and iron, and of mercuric chloride, zinc sulphate, ammonium sulphate, potassium carbonate, acidified brine. Many of these precipitations have analogies in leather manufacture (see Parts I. to IV.). The gelatin peptones or gelatoses are formed by hydrolysis with acids, alkalies, ferment or even by digestion with hot water only. A more detailed description of the properties of gelatine is given in Part V., Section I. Gelatine is sometimes called "glutin" and "ossein."
Animals are much the most important source of proteins, especially of those which are of importance in industrial chemistry. Proteins occur in nearly every part of all animals, and the "protoplasm" of the living cell is itself a protein. The keratins include the horny tissues of animals: the epidermis proper, the hair, horns, hoofs, nails, claws, the sebaceous and sudoriferous glands and ducts, and also the elastic fibres. The gelatins are obtained from the collagen of the skin fibres, the bones, tendons, ligaments, cartilages, etc. Fish bladders yield a strong gelatin. The albumins are obtained from the ova, blood, lymph, muscles and other internal organs of animals.
The classification of proteins herein adopted fits in well with the scope and purpose of this volume. The keratins are of little importance in chemical industry, but are of immense importance in mechanical industry, e.g. the woollen trade, which is based upon the keratin comprised by sheep wool. The collagen of the hide and skin fibres is of vast importance to chemical industry, and is the basis of the extensive leather trades discussed in Parts I. to IV. The waste pieces of these trades, together with bones, form the raw material of the manufacture of gelatin and glue, as discussed in Part V. The proteids of animals' flesh and blood, milk and eggs form the source of the food proteins discussed in Part VI. The food proteins embrace chiefly albumins, but gelatins and even keratins are involved to some extent.