Читать книгу Animal Proteins - Hugh Garner Bennett - Страница 9
THEORY OF VEGETABLE TANNAGE.
ОглавлениеVegetable tannage is a phenomenon of colloid chemistry. The old arguments as to whether tanning was a chemical or a physical process have been rendered obsolete by the advent of a new set of explanations, which, though shedding light on many obscure points, have enormously increased the complexity of the problem. In vegetable tannage an emulsoid gel (pelt) is immersed in a complex emulsoid sol (tan liquor), which immersion results, not in simple reaction or change, but in a series of changes.
One of these changes is adsorption. Pelt is a gel which possesses a great development of surface. It not only exhibits like gelatine the phenomenon of imbibition and dehydration to a very marked extent, but also possesses a very fine fibrous structure due to its organic origin; thus pelt possesses an enormous specific surface, further intensified by the preparation processes previously discussed, which split up the hide fibres into smaller bundles and into much finer constituent fibrils. Tannins, on the other hand, are hydrophile colloids which in water form emulsoid sols, and which may thus be expected to exhibit the phenomenon of adsorption. A tan liquor usually contains several tannins in addition to other closely similar substances, also in colloidal solution, and is therefore a sol of considerable complexity. The immersion of pelt into a tan liquor results in an adsorption, which consists essentially in an inequality of concentration in the sol, the greater concentration being at the interface. This inequality between the surface concentration and the volume concentration of the sol, is due primarily to considerations of surface tension and surface energy, and exists before the immersion of the pelt. The surface layer having excess over the volume concentration, any considerable extension of surface in a fixed volume of sol must produce a very considerable decrease in the volume concentration. This is what occurs when pelt is immersed in a tan liquor, the immersion being the considerable extension of surface. It should be especially remembered that the inequality of concentration is in the sol, on the liquid side of the interface. In adsorption, the substance adsorbed, i.e. the excess at the surface, is too frequently regarded as bound to the solid immersed. This is because the excess is in the layer which wets the solid and remains wetting it when the solid is removed. Thus the immersion of pelt produces primarily only a change in the distribution of the tannins in the liquor. It follows from this that the adsorption is an equilibrium, and that if the sol be diluted, the equilibrium will become the same as it would have been by immersing the pelt directly into the dilute solution. Thus, if pelt be first immersed in one tan liquor and then into a weaker one it will yield tan to the latter solution.
The chief object in heavy leather tanning is to obtain the maximum possible adsorption in the minimum possible time, or in other words, to obtain good weight quickly. The amount adsorbed is proportional to the actual extension of surface, i.e. the adsorption is a function of the specific surface of the adsorbent. Hence, to obtain good weight it is necessary to develop in the pelt its maximum possible specific surface. This is one of the objects of "plumping," which splits up the fibres. It is attained also by the solution of interfibrillar substance in limes and bates.
The amount adsorbed is also a function of the volume concentration in the sol after equilibrium is reached. Hence the better weights are obtained with stronger liquors.
The adsorption law is
y/m = ac1/n
where y is weight adsorbed by the weight m of adsorbent, and c the volume concentration after adsorption; a and n are numeral constants. Hence weight is determined by the strength of the liquor which the goods finally leave. The commencement of tannage is necessarily in weak infusions, in order to secure the maximum diffusion into interior of the fibres before they become heavily coated on the exterior. As the equilibrium is being established in such liquors the volume concentration diminishes, and thus makes it less likely that good weight will be attained; hence it is necessary in practice to move the goods constantly into fresh liquors of gradually increasing strength, and so maintain the rate of adsorption and save time. A further consequence of the adsorption isotherm is that as y varies as c1/n and n is > 1, y is increased appreciably only by a relatively large increase in c. Hence, though stronger liquors give better weight, there is a limit beyond which any further gain in weight is not justified by the enormous increase in the concentration necessary to attain it. Such great increase in c is impracticable not only on the ground of expense, but also on account of the great viscosity of the sol.
The amount of adsorption depends also upon the exact nature of the sol. It has been previously pointed out that the tannins differ largely in their penetrating and weight-giving powers. Some are readily adsorbable and are deposited in great concentration at the surface of the fibre, but for good weight it is necessary to use also the less adsorbable and more diffusible tans, which penetrate the fibre itself. Hence it is necessary for good weight to use a blend of materials, and so supply many grades of liability to adsorption. It is particularly advantageous to blend judiciously the two main types of material, the pyrogallol and catechol tans. It is also necessary for good weight to present to the pelt the more diffusible and less adsorbable tannins first, in order to secure the maximum diffusion into the interior of the fibre before the exterior of the fibre is heavily coated with the heavily adsorbable and astringent tans. The least adsorbable materials are therefore used in the early stages of tanning, and the most adsorbable materials at the end of the tanning process. Thus gambier is added to the early liquors (suspenders), solubilized quebracho to the later liquors (handlers), and mimosa bark extract to the final liquors (layers). There is also another excellent way of ensuring this progressive astringency of the liquors; this consists in leaching the required blend of materials together (or mixing them in the case of extracts) and presenting the mixed infusion to the nearly tanned goods, which adsorb chiefly the more astringent tannins. The liquor is then used for goods at a less advanced stage of tanning, which again take the most adsorbable constituents. This is repeated until the stage is reached when the fresh pelt is inserted into the nearly exhausted liquor, which naturally contains only the least adsorbable substances. This system is almost universal, and in practice is known as "working the liquors down the yard." It has the additional advantage of being a systematic method of economically exhausting ("spending") the tan liquors. When free acid is present in the tan liquors, it tends to distend the fibres composing the pelt by a strong and rapid adsorption. Thus distended or plumped the fibres present a still greater surface for adsorptive operation, but the distension naturally leaves less space between the fibres for the diffusion of the sol. Hence acid or "sour" tan liquors give in the long run more weight, but tan more slowly. Pelt tanned whilst thus plumped forms naturally a thicker and less pliable leather. This occurs in tanning sole leather, to a less extent with heavy dressing leather, and to a very small extent in the case of softer dressing leathers.
In addition to adsorption, there is another phenomenon of colloid chemistry in operation, viz. the mutual precipitation of the sols in the liquid by the gels in the hide. In most sols the disperse phase is electrically charged. The sol therefore possesses electric conductivity, and migration occurs in the electric field to the cathode or anode according to the nature of the charge. Oppositely charged sols precipitate one another, the precipitate containing both colloids. The maximum precipitation occurs when the + charge of one sol exactly equals and neutralizes the-charge of the other. There is thus an electrical equivalence; an amount of sol which is equivalent to a given amount of the other. This is not a chemical equivalence, however, and the precipitate is not a chemical compound in spite of its fairly constant composition. The composition of the precipitate, indeed, is not quite constant, for the optimum precipitation may not correspond exactly with the electrical equivalence, being influenced by the number of particles required, their size (dispersity), the rate of mixture, and the relative concentrations of the sols. This mutual precipitation is exhibited by emulsoids as well as suspensoids, but the charge (+ or-) on an emulsoid is in many instances largely an accidental matter, being determined by the medium in which it happens to be, its normal condition being electrical neutrality. Gelatin and pelt are such emulsoids, and a positively charged gelatin sol has been observed to precipitate a negatively charged gelatin sol. It is thought, however, that gelatin is primarily a positive sol. Pelt (whether delimed or not) is rapidly acidified by the quickly penetrating and strongly adsorbed organic acids of the old tan liquors and becomes positively charged before the tannins are adsorbed. The positive charge increases with the acidity of the liquor. Other emulsoids are not electrically neutral, but are electrically charged and exhibit considerable conductivity. Into this class fall the tannins, and in tanning it is thought that there is a mutual precipitation of the negative tannin sol with the positive hide gel, the precipitation of the negative sol being favoured by the acid condition of the liquor. The effect of increasing acidity soon falls off, however, as a saturation limit is soon reached. This mutual precipitation of colloids in tanning is in reality but an extension of the adsorption theory, which explains the predominant effect of H+, and OH-on the electric charge by stating that these ions are more readily adsorbed than other ions, and that as OH-is more readily adsorbed than H+ most sols are negative to water.
In addition to the adsorption phenomena described, there are in vegetable tannage secondary changes which are slow and "irreversible." These changes are obscure and are difficult to investigate. Oxidation, dehydration and polymerization have all been suggested, but there is little direct evidence. Certain it is, however, that time renders the tannage more permanent. It perhaps should be pointed out that in the very strongest tan liquors the viscosity of the tannin sol is so great that adhesion would be a better term than adsorption. There is no abrupt division between the two phenomena.
In the theory of vegetable tannage there is another factor the importance of which has been strongly emphasized by the author, viz., lyotrope influence. This has been most conveniently discussed in connection with gelatin gels (pp. 200-219), but its effect on hide gels is analogous. It has also an effect upon the diffusion and gelation of the tannin and non-tannin sols (cp. pp. 129 and 174).
Mechanical Operations.—In the tanyard the liquors are almost invariably divided up into sections, called "rounds" or "sets," in which the mechanical operations are different in aim and method. In the first pits entered by the goods there is rapid adsorption in spite of the low concentration and small astringency, and the great aim is to obtain evenness of action and a good level colour. It is also necessary to maintain the rate of adsorption. All the aims are attained by frequently moving the goods. Heavy leather is suspended vertically in the pits of tan liquor and handled up and down as well as forward from pit to pit. Such pits are termed "suspenders." In the earliest suspenders it is indeed advantageous to have the goods in constant motion. This is done by suspending on wooden frames which are rocked gently by mechanical power; such pits are termed "rockers." For dressing leather in which firmness and smooth grain are not so essential, the goods may be paddled in the first liquors. This is occasionally done with stronger liquors for the express purpose of working up the "grain" pattern. The goods after passing through the suspenders are usually passed to "handler" rounds, in which they are moved less frequently. In these pits the goods are laid horizontally one above the other. One advantage of handlers is that the goods flatten thoroughly and straighten one another by their own weight; another is that more goods can be placed in one pit than in suspenders. They are not so convenient to work, however, as suspenders, and the goods do not feed so rapidly. Hence the tendency is now to tan more in suspension, and to economize labour by an extension of the rockers. The handling of the goods is also saved by pumping the liquors and by working rounds of suspenders or rockers like the press leach system, with the difference that the stronger liquor is pumped in to the head pit, and the liquor passes upwards through the goods.
Finally the goods are placed in "layers" or "layaways," in which they remain undisturbed for a decidedly longer time. These pits contain the strongest liquors of the yard, and their principal function is to complete the tannage and give weight and firmness by the adsorption of bloom, reds, etc., in the interior of the hide. The goods are placed in horizontally, and are dusted in between with fresh tanning material which maintains the local strength of the liquor and keeps the goods somewhat apart. Drum tanning attains a more rapid penetration of the pelt by giving constant motion in stronger infusions. It is of course liable to result in an under-tannage of the interior of the fibre. After the goods have been "struck through" in the ordinary way, however, drumming in extract is increasingly used as a substitute for much labour in handling, and also to save the time spent in the early layers.
REFERENCES.
Procter, "Principles of Leather Manufacture," pp. 220-350.
Bennett, "Manufacture of Leather," pp. 113-179.
Bennett, "Celavinia and Babla," L.T.R., 1914, 122.
Dumesny and Noyer, "Manufacture of Tanning Extracts."
Theory:— Meunier and Seyewetz, Collegium, 1908, 195. Stiasny, Collegium, 1908, 117-159, 289, 294, 337. Procter and Wilson, Collegium (London), 1917, 3. Wilson, Collegium (London), 1917, 97, 100, 105. Moeller, Collegium (London), 1917, 13, 38, 46, 103; and J.S.L.T.C., 1917, 22, 56, 92. Bennett, J.S.L.T.C., 1917, 130-133, 169-182; 1918, 40; 1920, 75-86; S.L.R., 1916, March.