Читать книгу Nano-Technological Intervention in Agricultural Productivity - Javid A. Parray - Страница 36
1.6.1 Drugs and Medications
ОглавлениеThe basic physical and chemical properties of single or multiple nano‐sized inorganic particles are becoming an increasingly valuable commodity in developing novel nanoequipment used in many different physical, biological, biomedical, and therapeutic products [75].
Throughout every medicine market, the importance of NPs in delivering drugs in the best dosage range has improved. This has sometimes resulted in an improvement in the medicines' clinical efficiency, weakened side effects, and improved patient compliance [76]. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form of maghemite (Fe2O3) are most widely used for biomedical applications [77]. For biological and cell imaging applications and photothermal therapeutic applications, the option of NPs to achieve efficient contrast is based on the optical properties of NPs [78]. Over the past few years, hydrophilic NP development as a drug carrier has represented a significant challenge. Polyethylene oxide (PEO) and polylactic acid (PLA) NPs were established as an excellent method for intravenous drug administration among the different approaches [79]. For various in vivo applications, such as MRI contrast enhancement, tissue repair and immunoassay, detoxification of biological fluids, hyperthermia, drug delivery, and cell separation, superparamagnetic iron oxide NPs with good surface chemistry can be used [80]. Antibodies labelled with fluorescent dyes, enzymes, radioactive compounds, or colloidal Au [67] can be used to detect analytes in tissue parts via antigen–antibody interactions.
The specific benefits of liposomes, including the capability to shield drugs from degradation, target them at their active sites, and minimize harmfulness and other side effects, are a possible carrier instead of traditional dosage types. The polymeric NPs provide some significant advantages over the liposomes of these materials. NPs, for example, help improve drug ratability and provide convenient, controlled drug release properties. The extreme absorbed light is effectively converted into localized heat by Au‐NPs, which can be used for targeted laser photothermal cancer therapy [81, 82]. Besides this, to prevent tumour development, the antineoplastic effect of NPs is also effectively used. Compared to organic compounds that are comparatively toxic to biological systems, the antimicrobial properties of inorganic NPs add more potency to this essential feature [83–85]. To selectively overcome the microbial cells, the NPs are engaged with various classes. Because of their adequate antibacterial efficacy, TiO2, ZnO, BiVO4, and Cu‐ and Ni‐based NPs have been used for this reason [86].