Читать книгу Nano-Technological Intervention in Agricultural Productivity - Javid A. Parray - Страница 41

References

Оглавление

1 1 Feynman, R.P. (1960). There's plenty of room at the bottom. Eng. Sci. 22: 22–36.

2 2 Khan, I., Saeed, K., and Khan, I. (2017). Nanoparticles: properties, applications and toxicities. Arabian J. Chem. 12: 908–931.

3 3 Tiwari, J.N., Tiwari, R.N., and Kim, K.S. (2012). Zero‐dimensional, one‐dimensional, two‐dimensional and three‐dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57: 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003.

4 4 Dreaden, E.C., Alkilany, A.M., Huang, X. et al. (2012). The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41: 2740–2779. https://doi.org/10.1039/C1CS15237H.

5 5 Shin, W.K., Cho, J., Kannan, A.G. et al. (2016). Cross‐linked composite gel polymer electrolyte using mesoporous methacrylate‐functionalized SiO2 nanoparticles for lithium‐ion polymer batteries. Sci. Rep. 6: 26332. https://doi.org/10.1038/srep26332.

6 6 Lee, J.E., Lee, N., Kim, T. et al. (2011). Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44: 893–902. https://doi.org/10.1021/ar2000259.

7 7 Barrak, H., Saied, T., Chevallier, P. et al. (2016). Synthesis, characterization, and functionalization of ZnO nanoparticles by N‐(trimethoxysilylpropyl) ethylenediamine tri acetic acid (TMSEDTA): an investigation of the interactions between phloroglucinol and ZnO@TMSEDTA. Arabian J. Chem. https://doi.org/10.1016/j.arabjc.2016.04.019.

8 8 Ullah, H., Khan, I., Yamani, Z.H., and Qurashi, A. (2017). Sonochemical‐driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason. Sonochem. 34: 484–490. https://doi.org/10.1016/j.ultsonch.2016.06.025.

9 9 Ramacharyulu, P.V.R.K., Muhammad, R., Praveen Kumar, J. et al. (2015). Iron phthalocyanine modified mesoporous titania nanoparticles for photocatalytic activity and CO2 capture applications. Phys. Chem. Chem. Phys. 17: 26456–26462. https://doi.org/10.1039/C5CP03576G.

10 10 Shaalan, M., Saleh, M., El‐Mahdy, M., and El‐Matbouli, M. (2016). Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed. Nanotechnol. Biol. Med. 12: 701–710. https://doi.org/10.1016/j.nano.2015.11.005.

11 11 Astefanei, A., Núñez, O., and Galceran, M.T. (2015). Characterization and determination of fullerenes: a critical review. Anal. Chim. Acta 882: 1–21. https://doi.org/10.1016/j.aca.2015.03.025.

12 12 Ibrahim, K.S. (2013). Carbon nanotubes‐properties and applications: a review. Carbon Lett. 14: 131–144. https://doi.org/10.5714/CL.2013.14.3.131.

13 13 Aqel, A., El‐Nour, K.M.M.A., Ammar, R.A.A., and Al‐Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J. Chem. 5: 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022.

14 14 Elliott, J.A., Shibuta, Y., Amara, H. et al. (2013). Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale 5: 6662. https://doi.org/10.1039/c3nr01925j.

15 15 Saeed, K. and Khan, I. (2016). Preparation and characterization of single‐walled carbon nanotube/nylon 6,6 nanocomposites. Instrum Sci. Technol. 44: 435–444. https://doi.org/10.1080/10739149.2015.1127256.

16 16 Ngoy, J.M., Wagner, N., Riboldi, L., and Bolland, O. (2014). A CO2 capture technology using multi‐walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia 63: 2230–2248. https://doi.org/10.1016/j.egypro.2014.11.242.

17 17 Mabena, L.F., Sinha Ray, S., Mhlanga, S.D., and Coville, N.J. (2011). Nitrogen‐doped carbon nanotubes as a metal catalyst support. Appl. Nanosci. 1: 67–77. https://doi.org/10.1007/s13204-011-0013-4.

18 18 Sigmund, W., Yuh, J., Park, H. et al. (2006). Processing and structure relationships in electrospinning of ceramic fiber systems. J. Am. Ceram. Soc. 89: 395–407. https://doi.org/10.1111/j.1551-2916.2005.00807.x.

19 19 Thomas, S., Harshita, B.S.P., Mishra, P., and Talegaonkar, S. (2015). Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr. Pharm. Des. 21: 6165–6188. https://doi.org/10.2174/1381612821666151027153246.

20 20 Ali, S., Khan, I., Khan, S.A. et al. (2017). Electrocatalytic performance of Ni@Pt core‐shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J. Electroanal. Chem. 795: 17–25. https://doi.org/10.1016/j.jelechem.2017.04.040.

21 21 Sun, S. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 80 (287): 1989–1992. https://doi.org/10.1126/science.287.5460.1989.

22 22 Hisatomi, T., Kubota, J., and Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43: 7520–7535. https://doi.org/10.1039/C3CS60378D.

23 23 Abouelmagd, S.A., Meng, F., Kim, B.‐K. et al. (2016). Tannic acid‐mediated surface functionalization of polymeric nanoparticles. ACS Biomater. Sci. Eng.: 6b00497. https://doi.org/10.1021/acsbiomaterials.6b004.

24 24 Rawat, M.K., Jain, A., Singh, S. et al. (2011). Studies on binary lipid matrix‐based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J. Pharm. Sci. 100: 2366–2378. https://doi.org/10.1002/jps.22435.

25 25 Mashaghi, S., Jadidi, T., Koenderink, G., and Mashaghi, A. (2013). Lipid nanotechnology. Int. J. Mol. Sci. 14: 4242–4282. https://doi.org/10.3390/ijms14024242.

26 26 Puri, A., Loomis, K., Smith, B. et al. (2009). Lipid‐based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26: 523–580.

27 27 Gujrati, M., Malamas, A., Shin, T. et al. (2014). Multifunctional cationic lipid‐based nanoparticles facilitate endosomal escape and reduction‐triggered cytosolic siRNA release. Mol. Pharmaceutics 11: 2734–2744. https://doi.org/10.1021/mp400787s.

28 28 Wang, Y. and Xia, Y. (2004). Bottom‐up and top‐down approaches to the synthesis of monodispersed spherical colloids of low melting‐point metals. Nano Lett. 4: 2047–2050. https://doi.org/10.1021/nl048689j.

29 29 Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chem. 13: 2638. https://doi.org/10.1039/c1gc15386b.

30 30 Bello, S.A., Agunsoye, J.O., and Hassan, S.B. (2015). Synthesis of coconut shell nanoparticles via a top‐down approach: assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Mater. Lett. https://doi.org/10.1016/j.matlet.2015.07.063.

31 31 Priyadarshana, G., Kottegoda, N., Senaratne, A. et al. (2015). Synthesis of magnetite nanoparticles by top‐down approach from a high purity ore. J. Nanomater.: 1–8. https://doi.org/10.1155/2015/317312.

32 32 Garrigue, P., Delville, M.‐H., Labruge're, C. et al. (2004). Top‐down approach for the preparation of colloidal carbon nanoparticles. Chem. Mater. 16: 2984–2986. https://doi.org/10.1021/cm049685i.

33 33 Zhang, X., Lai, Z., Liu, Z. et al. (2015). A facile and universal top‐down method for preparation of monodisperse transition‐metal dichalcogenide nanodots. Angew. Chem. Int. Ed. 54: 5425–5428. https://doi.org/10.1002/anie.201501071.

34 34 Zhou, Y., Dong, C.K., Han, L. et al. (2016). Top‐down preparation of active cobalt oxide catalyst. ACS Catal. 6: 6699–6703. https://doi.org/10.1021/acscatal.6b02416.

35 35 Mogilevsky, G., Hartman, O., Emmons, E.D. et al. (2014). Bottom‐up synthesis of anatase nanoparticles with graphene domains. ACS Appl. Mater. Interfaces 6: 10638–10648. https://doi.org/10.1021/am502322y.

36 36 Liu, D., Li, C., Zhou, F. et al. (2015). Rapid synthesis of monodisperse Au nanospheres through a laser irradiation‐induced shape conversion, self‐assembly and their electromagnetic coupling SERS enhancement. Sci. Rep. 5: 7686. https://doi.org/10.1038/srep07686.

37 37 Liu, J., Liu, Y., Liu, N. et al. (2015). Metal‐free efficient photocatalyst for stable visible water splitting via a two‐electron pathway. Science 80 (347): 970–974. https://doi.org/10.1126/science.aaa3145.

38 38 Needham, D., Arslanagic, A., Glud, K. et al. (2016). Bottom‐up design of nanoparticles for anti‐cancer diapeutics: “put the drug in the cancer's food”. J. Drug Targeting: 1–21. https://doi.org/10.1080/1061186X.2016.1238092.

39 39 Wang, Y. and Xia, Y. (2004). Bottom‐up and top‐down approaches to synthesizing monodispersed spherical colloids of low melting‐point metals. Nano Lett. 4: 2047–2050. https://doi.org/10.1021/nl048689j.

40 40 Parveen, K., Banse, V., and Ledwani, L. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. Acta Naturae: 20048. https://doi.org/10.1063/1.4945168.

41 41 Ahmed, S., Annu, S., and Yudha, S.S. (2016). Biosynthesis of gold nanoparticles: a green approach. J. Photochem. Photobiol., B 161: 141–153. https://doi.org/10.1016/j.jphotobiol.2016.04.034.

42 42 Biswas, A., Bayer, I.S., Biris, A.S. et al. (2012). Advances in top‐down and bottom‐up surface nanofabrication: techniques, applications and prospects. Adv. Colloid Interface Sci. 170: 2–27. https://doi.org/10.1016/j.cis.2011.11.001.

43 43 Mirzadeh, E. and Akhbari, K. (2016). Synthesis of nanomaterials with desirable morphologies from metal–organic frameworks for various applications. CrystEngComm 18: 7410–7424. https://doi.org/10.1039/C6CE01076H.

44 44 Khlebtsov, N. and Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40: 1647–1671. https://doi.org/10.1039/C0CS00018C.

45 45 Wang, J., Yang, N., Tang, H. et al. (2013). Accurate control of multishelled Co3O4 hollow microspheres as high‐performance anode materials in lithium‐ion batteries. Angew. Chem. Int. Ed. 52: 6417–6420. https://doi.org/10.1002/anie.201301622.

46 46 Emery, A.A., Saal, J.E., Kirklin, S. et al. (2016). High‐throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater. 28 https://doi.org/10.1021/acs.chemmater.6b01182.

47 47 Ingham, B. (2015). X‐ray scattering characterization of nanoparticles. Crystallogr. Rev. 21: 229–303. https://doi.org/10.1080/0889311X.2015.1024114.

48 48 Avasare, V., Zhang, Z., Avasare, D. et al. (2015). Room‐temperature synthesis of TiO2 nanospheres and their solar‐driven photoelectrochemical hydrogen production. Int. J. Energy Res. 39: 1714–1719. https://doi.org/10.1002/er.3372.

49 49 Khan, I., Ali, S., Mansha, M., and Qurashi, A. (2017). Sonochemical assisted hydrothermal synthesis of pseudo‐flower shaped Bismuth vanadate (BiVO4) and their solar‐driven water splitting application. Ultrason. Sonochem. 36: 386–392. https://doi.org/10.1016/j.ultsonch.2016.12.014.

50 50 Mansha, M., Qurashi, A., Ullah, N. et al. (2016). Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 42: 11490–11495. https://doi.org/10.1016/j.ceramint.2016.04.035.

51 51 Lykhach, Y., Kozlov, S.M., Skála, T. et al. (2015). Counting electrons on supported nanoparticles. Nat. Mater. https://doi.org/10.1038/nmat4500.

52 52 Oprea, B., Martínez, L., Román, E. et al. (2015). Dispersion and functionalization of nanoparticles synthesized by gas aggregation source: opening new routes toward the fabrication of nanoparticles for biomedicine. Langmuir 31: 13813–13820. https://doi.org/10.1021/acs.langmuir.5b03399.

53 53 Wang, Y.C., Engelhard, M.H., Baer, D.R., and Castner, D.G. (2016). Quantifying the impact of nanoparticle coatings and nonuniformities on XPS analysis: gold/silver core‐shell nanoparticles. Anal. Chem. 88: 3917–3925. https://doi.org/10.1021/acs.analchem.6b00100.

54 54 Dablemont, C., Lang, P., Mangeney, C. et al. (2008). FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24: 5832–5841. https://doi.org/10.1021/la7028643.

55 55 Pokhrel, M., Wahid, K., and Mao, Y. (2016). Systematic studies on RE2‐Hf2O7:5%Eu3+ (RE = Y, La, Pr, Gd, Er, and Lu) nanoparticles: effects of the A‐site RE3+ cation and calcination on structure and photoluminescence. J. Phys. Chem. C 120: 14828–14839. https://doi.org/10.1021/acs.jpcc.6b04798.

56 56 Muehlethaler, C., Leona, M., and Lombardi, J.R. (2016). Review of surface‐enhanced Raman scattering applications in forensic science. Anal. Chem. 88: 152–169. https://doi.org/10.1021/acs.analchem.5b04131.

57 57 Ma, S., Livingstone, R., Zhao, B., and Lombardi, J.R. (2011). Enhanced Raman spectroscopy of nanostructured semiconductor phonon modes. J. Phys. Chem. Lett. 2: 671–674. https://doi.org/10.1021/jz2001562.

58 58 Sikora, A., Shard, A.G., and Minelli, C. (2016). Size and ζ‐potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing. Langmuir 32: 2216–2224. https://doi.org/10.1021/acs.Langmuir.5b04160.

59 59 Filipe, V., Hawe, A., and Jiskoot, W. (2010). Critical evaluation of nanoparticle tracking analysis (NTA) by insight to measure nanoparticles and protein aggregates. Pharm. Res. 27: 796–810. https://doi.org/10.1007/s11095-010-0073-2.

60 60 Gross, J., Sayle, S., Karow, A.R. et al. (2016). Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur. J. Pharm. Biopharm. 104: 30–41. https://doi.org/10.1016/j.ejpb.2016.04.013.

61 61 Cho, C.H., Aspetti, C.O., Park, J., and Agarwal, R. (2013). Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photonics 7: 285–289.

62 62 Chowdhury, F.I., Nayfeh, M.H., and Nayfeh, A.M. (2016). Enhanced performance of thin‐film silicon solar cells with a top film of silicon nanoparticles due to down‐conversion and near resonance charge transport. J. Sol. Energy 125: 332–338.

63 63 Swinehart, D.F. (1962). The Beer‐Lambert law. J. Chem. Educ. 39: 333. https://doi.org/10.1021/ed039p333.

64 64 Peng, K., Fu, L., Yang, H., and Ouyang, J. (2016). Perovskite LaFeO3/−montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 6: 19723. https://doi.org/10.1038/srep19723.

65 65 Eustis, S. and El‐Sayed, M.A. (2006). Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35: 209–217. https://doi.org/10.1039/B514191E.

66 66 Khlebtsov, N. and Dykman, L. (2010). Optical properties andbiomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111: 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012.

67 67 Khlebtsov, N.G. and Dykman, L.A. (2010). Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 111: 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012.

68 68 Reiss, G. and Hutten, A. (2005). Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 4: 725–726. https://doi.org/10.1038/nmat1494.

69 69 Faivre, D. and Bennet, M. (2016). Materials science: magnetic nanoparticles line up. Nature 535: 235–236. https://doi.org/10.1038/535235a.

70 70 Qi, M., Zhang, K., Li, S. et al. (2016). Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J. Chem. 4480: 4480–4491. https://doi.org/10.1039/c5nj02441b.

71 71 Wu, W., He, Q., and Jiang, C. (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3: 397–415. https://doi.org/10.1007/s11671-008-9174-9.

72 72 Guo, D., Xie, G., and Luo, J. (2014). Mechanical properties of nanoparticles: basics and applications. J. Phys. D: Appl. Phys. 47: 13001. https://doi.org/10.1088/0022-3727/47/1/013001.

73 73 Lee, S., Choi, S.U.‐S., Li, S., and Eastman, J.A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121: 280–285. https://doi.org/10.1115/1.2825978.

74 74 Cao, Y.C. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80 (297): 1536–1540. https://doi.org/10.1126/science.297.5586.1536.

75 75 Loureiro, A., Azoia, N.G., Gomes, A.C., and Cavaco‐Paulo, A. (2016). Albumin‐based nanodevices as drug carriers. Curr. Pharm. Des. 22: 1371–1390.

76 76 Alexis, F., Pridgen, E., Molnar, L.K., and Farokhzad, O.C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceutics 5: 505–515. https://doi.org/10.1021/mp800051m.

77 77 Ali, A., Zafar, H., Zia, M. et al. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl 9: 49–67. https://doi.org/10.2147/NSA.S99986.

78 78 Jain, P.K., Lee, K.S., El‐Sayed, I.H., and El‐Sayed, M.A. (2006). Calculated absorption and scattering properties of gold nanoparticles different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110: 7238–7248. https://doi.org/10.1021/jp057170o.

79 79 Calvo, P., Remuoon‐Lopez, C., Vila‐Jato, J.L., and Alonso, M.J. (1997). Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63: 125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1*125::AID-APP13*3.0.CO;2-4.

80 80 Laurent, S., Forge, D., Port, M. et al. (2010). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110: 2064–2110. https://doi.org/10.1021/cr900197g.

81 81 Zhang, J. and Saltzman, M. (2013). Engineering biodegradable nanoparticles for drug and gene delivery. Chem. Eng. Prog. 109: 25–30.

82 82 Prashant, K.J. and Ivan, H.S. (2007). Au NPs target cancer. Nano Today 2: 19–29.

83 83 Chen, C., Xing, G., Wang, J. et al. (2005). Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett. 5: 2050–2057. https://doi.org/10.1021/nl051624b.

84 84 AshaRani, P.V., Low Kah Mun, G., Hande, M.P., and Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3: 279–290. https://doi.org/10.1021/nn800596w.

85 85 Hajipour, M.J., Fromm, K.M., Ashkarran, A.A. et al. (2012). Antibacterial properties of nanoparticles. Trends Biotechnol. 30: 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004.

86 86 Yin, Q., Wu, W., Qiao, R. et al. (2016). Glucose assisted transformation of Ni‐doped‐ZnO@carbon to a Ni‐dopedZnO@void@SiO2 core–shell nanocomposite photocatalyst. RSC Adv. 6: 38653–38661. https://doi.org/10.1039/C5RA26631A.

87 87 Todescato, F., Fortunati, I., Minotto, A. et al. (2016). Engineering of semiconductor nanocrystals for light‐emitting applications. Materials 9: 672. https://doi.org/10.3390/ma9080672.

88 88 Weiss, J., Takhistov, P., and McClements, D.J. (2006). Functional materials in food nanotechnology. J. Food Sci. 71: R107–R116. https://doi.org/10.1111/j.1750-3841.2006.00195.x.

89 89 Lei, Y.‐M., Huang, W.‐X., Zhao, M. et al. (2015). Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal. Chem. 87: 7787–7794. https://doi.org/10.1021/acs.analchem.5b01445.

90 90 Unser, S., Bruzas, I., He, J., and Sagle, L. (2015). Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15: 15684–15716. https://doi.org/10.3390/s150715684.

91 91 Ripp, S. and Henry, T.B. (eds.) (2011). Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us, ACS Symposium Series. Washington, DC: American Chemical Society http://dx.doi.org/10.1021/bk-2011-1079.

92 92 Golobič, M., Jemec, A., Drobne, D. et al. (2012). Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ. Sci. Technol. 46: 12112–12119. https://doi.org/10.1021/es3022182.

93 93 Swadeshmukul, S., Peng, Z., Kemin, W. et al. (2001). Conjugation of biomolecules with luminophore‐doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73: 4988–4993. https://doi.org/10.1021/AC010406+.

94 94 Tratnyek, P.G. and Johnson, R.L. (2006). Nanotechnologies for environmental cleanup. Nano Today 1: 44–48. https://doi.org/10.1016/S1748-0132(06)70048-2.

95 95 Mueller, N.C. and Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42: 4447–4453. https://doi.org/10.1021/es7029637.

96 96 Rogozea, E.A., Petcu, A.R., Olteanu, N.L. et al. (2017). Tandem adsorption‐photodegradation activity induced by light on NiO‐ZnO p–n couple modified silica nanomaterials. Mater. Sci. Semicond. Process. 57: 1–11. https://doi.org/10.1016/j.mssp.2016.10.006.

97 97 Rogozea, E.A., Olteanu, N.L., Petcu, A.R. et al. (2016). Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles. Opt. Mater. 56: 45–48. https://doi.org/10.1016/j.optmat.2015.12.020.

98 98 Kosmala, A., Wright, R., Zhang, Q., and Kirby, P. (2011). Synthesis of silver nanoparticles and fabrication of aqueous Ag inks for inkjet printing. Mater. Chem. Phys. 129: 1075–1080. https://doi.org/10.1016/j.matchemphys.2011.05.064.

99 99 Cushing, B.L., Kolesnichenko, V.L., and O'Connor, C.J. (2004). Recent advances in the liquid‐phase syntheses of inorganic nanoparticles. Chem. Rev. 104: 3893–3946. https://doi.org/10.1021/cr030027b.

100 100 O'Brien, S., Brus, L., and Murray, C.B. (2001). Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized oxide nanoparticle synthesis strategy. J. Am. Chem. Soc. 123: 12085–12086. https://doi.org/10.1021/ja011414a.

101 101 Wang, D.W. and Su, D. (2014). Heterogeneous nanocarbon materials for the oxygen reduction reaction. Energy Environ. Sci. 7: 576. https://doi.org/10.1039/c3ee43463j.

102 102 Wang, Z., Pan, X., He, Y. et al. (2015). Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015: 1–21. https://doi.org/10.1155/2015/165631.

103 103 Kot, M., Major, Ł., Lackner, J.M. et al. (2016). Mechanical and tribological properties of carbon‐based graded coatings. J. Nanomater. 2016: 1–14. https://doi.org/10.1155/2016/8306345.

Nano-Technological Intervention in Agricultural Productivity

Подняться наверх