Читать книгу Agua oxigenada: aplicaciones y éxitos curativos - Jochen Gartz - Страница 9
ОглавлениеPropiedades y particularidades del peróxido de hidrógeno
En el año 1818, el químico francés Louis Jacques Thénard (1777-1857) descubrió el H2O2 en una reacción inorgánica: mezcló peróxido de bario con ácido y obtuvo peróxido de hidrógeno en una solución acuosa. El corrosivo ácido sulfúrico demostró ser especialmente adecuado, ya que el subproducto generado, sulfato de bario, resultaba insoluble y podía filtrarse. El peróxido de hidrógeno así obtenido se denominó «agua oxigenada», porque al descomponerse liberaba oxígeno y, para sorpresa de los investigadores, solo quedaba agua. Enseguida se descubrió, también por azar, su efecto curativo en heridas y comenzó su aplicación en medicina.
En aquella época inicial de producción del peróxido de hidrógeno se realizó un descubrimiento importante: un pequeño exceso de ácido sulfúrico en la reacción daba lugar a una solución de peróxido ligeramente ácida que resultaba más estable que el producto puro. Este último se descomponía con rapidez cuando se almacenaba en frascos de vidrio, lo que hoy en día tiene fácil explicación: las sustancias alcalinas del vidrio se disolvían y reaccionaban con el peróxido de hidrógeno.
Estas primeras observaciones guardan relación con la pregunta planteada en muchos de los correos que he recibido: si los estabilizadores que se utilizan actualmente pueden considerarse problemáticos.
En primer lugar, debe señalarse que la estabilización no produce una desnaturalización del peróxido de hidrógeno. Esta pregunta surge porque algunos lectores han visto paralelismos con la desnaturalización del alcohol, que, tanto en el caso del alcohol de quemar como el de uso médico, ya no puede beberse. No obstante, esto se hace para que el alcohol no resulte apetecible y para evitar los elevados impuestos que se aplicarían si el alcohol pudiera declararse como producto alimentario.
El hecho es que todas las formas y marcas de agua oxigenada en los comercios están estabilizadas. Sin estabilizador, el peróxido solo se aplica en algunas investigaciones científicas, pero no está disponible en los canales normales. En contra de algunas opiniones, incluso el peróxido de hidrógeno al 35 % («grado alimentario») con el que se desinfectan los envases de los alimentos está estabilizado.
Sin embargo, hace ya varias décadas que no se incluye el problemático ácido sulfúrico: el método de producción a partir del peróxido de bario se abandonó hace mucho tiempo, y las ingentes cantidades de peróxido de hidrógeno producidas hoy en día se encuentran, en esencia, en el reino de la química orgánica. En los procesos actuales se almacena inicialmente oxígeno atmosférico y, mediante una reacción de división, se transforma en peróxido de hidrógeno; los estabilizadores se agregan posteriormente.
La solución del 3 % de la farmacia, por ejemplo, contiene pequeñas cantidades de ácido fosfórico para la estabilización. Se trata de un aditivo alimentario aprobado (E338) que está presente en altas concentraciones en la Coca-Cola. Si esta solución se diluye hasta que solo tiene un 1 % de peróxido de hidrógeno, el ácido ya no puede identificarse con papel indicador de pH. Estas soluciones al 1 % pueden conservarse entre cuatro y ocho semanas a temperatura ambiente, en un ambiente oscuro y en recipientes de plástico, sin que se degraden.
Las soluciones comerciales de agua oxigenada en concentraciones más altas, del 10 % o el 11 %, contienen normalmente ácidos fosfónicos (fosfonatos) de composición similar. Además, en las concentraciones más elevadas de hasta el 35 %, para la estabilización, se utilizan pequeñas cantidades de sustancias orgánicas (agentes quelantes) que forman compuestos con metales, por ejemplo, con iones de hierro, anulando su efecto.
Al diluir soluciones de alto porcentaje con agua, la concentración activa del estabilizador se reduce, pero esto provoca que los preparados obtenidos no se conserven durante tanto tiempo como los productos iniciales más concentrados.
En cualquier caso, la estabilización solo es relativa, y sirve para proteger la sustancia reactiva en la medida suficiente durante el almacenamiento; su función es evitar la liberación de oxígeno, que podría causar la explosión del recipiente. La capacidad de reacción fuera del recipiente puede comprobarse con un sencillo experimento: si se vierten unos pocos mililitros del preparado de la farmacia en un desagüe, se escucha de inmediato un sonido siseante que anuncia la formación de oxígeno y agua en el proceso de descomposición. Esto se debe a que el tubo de desagüe contiene varios compuestos, como derivados de azufre o sales metálicas, y el estabilizador no puede impedir la reacción debido a la elevada concentración de estos agentes.