Читать книгу Sound - John Tyndall - Страница 16

§ 9. Theoretic Velocity calculated by Newton Laplace’s Correction

Оглавление

Table of Contents

We now come to one of the most delicate points in the whole theory of sound. The velocity through air has been determined by direct experiment; but knowing the elasticity and density of the air, it is possible, without any experiment at all, to calculate the velocity with which a sound-wave is transmitted through it. Sir Isaac Newton made this calculation, and found the velocity at the freezing temperature to be 916 feet a second. This is about one-sixth less than actual observation had proved the velocity to be, and the most curious suppositions were made to account for the discrepancy. Newton himself threw out the conjecture that it was only in passing from particle to particle of the air that sound required time for its transmission; that it moved instantaneously through the particles themselves. He then supposed the line along which sound passes to be occupied by air-particles for one-sixth of its extent, and thus he sought to make good the missing velocity. The very art and ingenuity of this assumption were sufficient to throw doubt on it; other theories were therefore advanced, but the great French mathematician Laplace was the first Fig. 12. to completely solve the enigma. I shall now endeavor to make you thoroughly acquainted with his solution.

Into this strong cylinder of glass, T U, Fig. 12, which is accurately bored, and quite smooth within, fits an air-tight piston. By pushing the piston down, I condense the air beneath it, heat being at the same time developed. A scrap of amadou attached to the bottom of the piston is ignited by the heat generated by compression. If a bit of cotton wool dipped into bisulphide of carbon be attached to the piston, when the latter is forced down, a flash of light, due to the ignition of the bisulphide of carbon vapor, is observed within the tube. It is thus proved that when air is compressed heat is generated. By another experiment it may be shown that when air is rarefied cold is developed. This brass box contains a quantity of condensed air. I open the cock, and permit the air to discharge itself against a suitable thermometer; the sinking of the instrument immediately declares the chilling of the air.

All that you have heard regarding the transmission of a sonorous pulse through air is, I trust, still fresh in your minds. As the pulse advances it squeezes the particles of air together, and two results follow from this compression. First, its elasticity is augmented through the mere augmentation of its density. Secondly, its elasticity is augmented by the heat of compression. It was the change of elasticity which resulted from a change of density that Newton took into account, and he entirely overlooked the augmentation of elasticity due to the second cause just mentioned. Over and above, then, the elasticity involved in Newton’s calculation, we have an additional elasticity due to changes of temperature produced by the sound-wave itself. When both are taken into account, the calculated and the observed velocities agree perfectly.

But here, without due caution, we may fall into the gravest error. In fact, in dealing with Nature, the mind must be on the alert to seize all her conditions; otherwise we soon learn that our thoughts are not in accordance with her facts. It is to be particularly noted that the augmentation of velocity due to the changes of temperature produced by the sonorous wave itself is totally different from the augmentation arising from the heating of the general mass of the air. The average temperature of the air is unchanged by the waves of sound. We cannot have a condensed pulse without having a rarefied one associated with it. But in the rarefaction, the temperature of the air is as much lowered as it is raised in the condensation. Supposing, then, the atmosphere parcelled out into such condensations and rarefactions, with their respective temperatures, an extraneous sound passing through such an atmosphere would be as much retarded in the latter as accelerated in the former, and no variation of the average velocity could result from such a distribution of temperature.

Sound

Подняться наверх