Читать книгу Sound - John Tyndall - Страница 8

Оглавление

Fig. 1.

The process may be rudely represented by the propagation of motion through a row of glass balls, such as are employed in the game of solitaire. Placing the balls along a groove thus, Fig. 1, each of them touching its neighbor, and urging one of them against the end of the row: the motion thus imparted to the first ball is delivered up to the second, the motion of the second is delivered up to the third, the motion of the third is imparted to the fourth; each ball, after having given up its motion, returning itself to rest. The last ball only of the row flies away. In a similar way is sound conveyed from particle to particle through the air. The particles which fill the cavity of the ear are finally driven against the tympanic membrane, which is stretched across the passage leading from the external ear toward the brain. This membrane, which closes outwardly the “drum” of the ear, is thrown into vibration, its motion is transmitted to the ends of the auditory nerve, and afterward along that nerve to the brain, where the vibrations are translated into sound. How it is that the motion of the nervous matter can thus excite the consciousness of sound is a mystery which the human mind cannot fathom.


Fig. 2.

The propagation of sound may be illustrated by another homely but useful illustration. I have here five young assistants, A, B, C, D, and E, Fig. 2, placed in a row, one behind the other, each boy’s hands resting against the back of the boy in front of him. E is now foremost, and A finishes the row behind. I suddenly push A, A pushes B, and regains his upright position; B pushes C; C pushes D; D pushes E; each boy, after the transmission of the push, becoming himself erect. E, having nobody in front, is thrown forward. Had he been standing on the edge of a precipice, he would have fallen over; had he stood in contact with a window, he would have broken the glass; had he been close to a drumhead, he would have shaken the drum. “We could thus transmit a push through a row of a hundred boys, each particular boy, however, only swaying to and fro. Thus, also, we send sound through the air, and shake the drum of a distant ear, while each particular particle of the air concerned in the transmission of the pulse makes only a small oscillation.

But we have not yet extracted from our row of boys all that they can teach us. When A is pushed he may yield languidly, and thus tardily deliver up the motion to his neighbor B. B may do the same to C, C to D, and D to E. In this way the motion might be transmitted with comparative slowness along the line. But A, when pushed, may, by a sharp muscular effort and sudden recoil, deliver up promptly his motion to B, and come himself to rest; B may do the same to C, C to D, and D to E, the motion being thus transmitted rapidly along the line. Now this sharp muscular effort and sudden recoil is analogous to the elasticity of the air in the case of sound. In a wave of sound, a lamina of air, when urged against its neighbor lamina, delivers up its motion and recoils, in virtue of the elastic force exerted between them; and the more rapid this delivery and recoil, or in other words the greater the elasticity of the air, the greater is the velocity of the sound.


Fig. 3.

A very instructive mode of illustrating the transmission of a sound-pulse is furnished by the apparatus represented in Fig. 3, devised by my assistant, Mr. Cottrell. It consists of a series of wooden balls separated from each other by spiral springs. On striking the knob A, a rod attached to it impinges upon the first ball B, which transmits its motion to C, thence it passes to E, and so on through the entire series. The arrival at D is announced by the shock of the terminal ball against the wood, or, if we wish, by the ringing of a bell. Here the elasticity of the air is represented by that of the springs. The pulse may be rendered slow enough to be followed by the eye.

Scientific education ought to teach us to see the invisible as well as the visible in nature, to picture with the vision of the mind those operations which entirely elude bodily vision; to look at the very atoms of matter in motion and at rest, and to follow them forth, without ever once losing sight of them, into the world of the senses, and see them there integrating themselves in natural phenomena. With regard to the point now under consideration, we must endeavor to form a definite image of a wave of sound. We ought to see mentally the air-particles, when urged outward by the explosion of our balloon, crowding closely together; but immediately behind this condensation we ought to see the particles separated more widely apart. We must, in short, to be able to seize the conception that a sonorous wave consists of two portions, in the one of which the air is more dense, and in the other of which it is less dense than usual. A condensation and a rarefaction, then, are the two constituents of a wave of sound. This conception shall be rendered more complete in our next lecture.

Sound

Подняться наверх