Читать книгу Sound - John Tyndall - Страница 18
§ 10. Ratio of Specific Heats of Air deduced from Velocity of Sound
ОглавлениеHaving grasped this, even partially, I will ask you to accompany me to a remote corner of the domain of physics, with the view, however, of showing that remoteness does not imply discontinuity. Let a certain quantity of air at a temperature of 0°, contained in a perfectly inexpansible vessel, have its temperature raised 1°. Let the same quantity of air, placed in a vessel which permits the air to expand when it is heated—the pressure on the air being kept constant during its expansion—also have its temperature raised 1°. The quantities of heat employed in the two cases are different. The one quantity expresses what is called the specific heat of air at constant volume; the other the specific heat of air at constant pressure.21 It is an instance of the manner in which apparently unrelated natural phenomena are bound together, that from the calculated and observed velocities of sound in air we can deduce the ratio of these two specific heats. Squaring Newton’s theoretic velocity and the observed velocity, and dividing the greater square by the less, we obtain the ratio referred to. Calling the specific heat at constant volume Cv, and that at constant pressure Cp; calling, moreover, Newton’s calculated velocity V, and the observed velocity V′, Laplace proved that—
Inserting the values of V and V′ in this equation, and making the calculation, we find—
Thus, without knowing either the specific heat at constant volume or at constant pressure, Laplace found the ratio of the greater of them to the less to be 1·42. It is evident from the foregoing formulæ that the calculated velocity of sound, multiplied by the square root of this ratio, gives the observed velocity.
But there is one assumption connected with the determination of this ratio, which must be here brought clearly forth. It is assumed that the heat developed by compression remains in the condensed portion of the wave, and applies itself there to augment the elasticity; that no portion of it is lost by radiation. If air were a powerful radiator, this assumption could not stand. The heat developed in the condensation could not then remain in the condensation. It would radiate all round, lodging itself for the most part in the chilled and rarefied portion of the wave, which would be gifted with a proportionate power of absorption. Hence the direct tendency of radiation would be to equalize the temperatures of the different parts of the wave, and thus to abolish the increase of velocity which called forth Laplace’s correction.22