Читать книгу Praktische Statistik für Data Scientists - Peter Bruce - Страница 29

Die Anzahl der Freiheitsgrade und die Frage, ob n oder n – 1?

Оглавление

In Statistikbüchern finden Sie für gewöhnlich einen Abschnitt, der erklärt, warum wir n – 1 im Nenner der Formel für die Varianz anstelle von n haben, was uns zum Konzept der Freiheitsgrade führt. Diese Unterscheidung ist an sich nicht von großer Bedeutung, da n im Allgemeinen so groß ist, dass es keinen besonderen Unterschied macht, ob man durch n oder n – 1 dividiert. Aber falls es Sie interessiert, hier folgt die Erklärung. Sie basiert auf der Prämisse, dass Sie auf Basis einer Stichprobe Schätzungen über eine Grundgesamtheit (Population) vornehmen möchten.

Wenn Sie intuitiverweise n im Nenner der Varianzformel verwenden, unterschätzen Sie den wahren Wert der Varianz und der Standardabweichung in der Grundgesamtheit. Dies wird als ein verzerrter Schätzer (engl. biased) bezeichnet. Wenn Sie jedoch n – 1 anstelle von n einsetzen, ermitteln Sie einen unverzerrten (engl. unbiased) bzw. erwartungstreuen Schätzer der Varianz.

Um vollständig zu erklären, warum die Verwendung von n zu einem verzerrten Schätzer führt, müssen wir den Begriff der Freiheitsgrade heranziehen, der die Anzahl der Einschränkungen bei der Berechnung eines Schätzers berücksichtigt. In diesem Fall gibt es n – 1 Freiheitsgrade, da es eine Randbedingung gibt: Die Standardabweichung hängt von der Berechnung des Stichprobenmittelwerts ab. In den meisten Anwendungsfällen müssen sich Data Scientists keine Gedanken über die Anzahl der Freiheitsgrade machen.

Weder die Varianz noch die Standardabweichung oder die mittlere absolute Abweichung ist gegenüber Ausreißern und Extremwerten robust (siehe »Median und andere robuste Lagemaße« auf Seite 11 für eine Erläuterung zu den robusten Lagemaßen). Die Varianz und die Standardabweichung sind besonders empfindlich gegenüber Ausreißern, da sie auf den quadrierten Abweichungen beruhen.

Ein robustes Streuungsmaß ist die mittlere absolute Abweichung vom Median (engl. Median Absolute Deviation from the Median, MAD):

Mittlere absolute Abweichung vom = Median(|x1m|, |x2m| ,…, |xNm|)

wobei m dem Median entspricht. Wie der Median wird auch die mittlere absolute Abweichung vom Median nicht durch Extremwerte beeinflusst. Es ist auch möglich, eine getrimmte Standardabweichung analog zum getrimmten Mittelwert zu berechnen (siehe »Mittelwert« auf Seite 9).

Die Varianz, die Standardabweichung, die mittlere absolute Abweichung und die mittlere absolute Abweichung vom Median sind keine äquivalenten Streuungsmaße – selbst dann nicht, wenn die Daten normalverteilt sind. So ist die Standardabweichung immer größer als die mittlere absolute Abweichung, die ihrerseits größer als die mittlere absolute Abweichung vom Median ist. Manchmal wird die mittlere absolute Abweichung vom Median mit einem konstanten Skalierungsfaktor multipliziert, um den Wert für den Fall, dass die Daten normalverteilt sind, genau so zu skalieren wie die Standardabweichung. Der üblicherweise verwendete Faktor von 1,4826 bedeutet, dass 50% der Normalverteilung in den Bereich ±MAD fallen (siehe z.B. https://oreil.ly/SfDk2).
Praktische Statistik für Data Scientists

Подняться наверх