Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 62

Temperatur

Оглавление

Der Begriff der Temperatur beruht auf der Beobachtung, dass eine Änderung eines physikalischen Zustandes (z. B. eine Volumenänderung) auftreten kann, wenn zwei Körper miteinander in Kontakt gebracht werden (etwa, wenn man rot glühendes Metall in Wasser taucht). In Abschnitt 2.1.1 werden wir sehen, dass diese Zustandsänderung auf einen Energiefluss in Form von Wärme von einem Körper zum anderen zurückgeführt werden kann. Die Temperatur T gibt uns die Richtung des Energieflusses durch eine Wärme leitende starre Wand an. Wenn Energie von A nach B fließt, sobald A und B miteinander in Kontakt kommen, sagen wir: A hat eine höhere Temperatur als B (Abb. 1-2).


Abb. 1-2 (a), (c) Energie in Form von Wärme fließt vom Teilsystem mit der höheren Temperatur zum Teilsystem mit der niedrigen Temperatur, wenn beide Systeme über eine diathermische Wand miteinander in Kontakt stehen. (b) Trotz wärmedurchlässigerWand findet kein Netto-Wärmetransport zwischen den Systemen statt, wenn beide die gleiche Temperatur besitzen. Sie befinden sich dann im thermischen Gleichgewicht.

Es ist zweckmäßig, zwei Arten von Wänden zu unterscheiden, durch die die Gegenstände voneinander getrennt sein können: Eine Wand ist diathermisch (Wärme leitend, von griechisch dia, „hindurch“), wenn bei Kontakt zweier Körper mit unterschiedlicher Temperatur eine Zustandsänderung eintritt. Ein Metallbehälter hat z. B. diathermische Wände. Wenn auch bei unterschiedlicher Temperatur der beiden Körper keine Änderung beobachtet wird, heißt die Wand adiabatisch (thermisch isoliert); ein gutes Beispiel hierfür sind die Wände eines Dewargefäßes.

Die Eigenschaft „Temperatur“ gibt uns an, ob sich zwei Objekte im thermischen Gleichgewicht befänden, wenn sie über eine diathermische Wand miteinander im Kontakt wären. Ein thermisches Gleichgewicht liegt vor, wenn bei Kontakt zweier Gegenstände über eine diathermische Wand keine Zustandsänderung eintritt. Nehmen wir an, ein System A (beispielsweise ein Eisenblock) sei im thermischen Gleichgewicht mit einem System B (einem Kupferblock), das wiederum im thermischen Gleichgewicht mit einem weiteren System C (einer Flasche voll Wasser) sei. Experimentell stellt man fest, dass dann auch A und C miteinander im thermischen Gleichgewicht stehen, wenn sie in Kontakt gebracht werden (Abb. 1-3). Diese Beobachtung fasst der Nullte Hauptsatz der Thermodynamik zusammen:


Abb. 1-3 Wenn sich ein Objekt A mit einem Objekt B im thermischen Gleichgewicht befindet und das Objekt B mit einem Objekt C, so stehen auch A und C miteinander im thermischen Gleichgewicht. Diese Erfahrung beschreibt der Nullte Hauptsatz der Thermodynamik.

Wenn A im thermischen Gleichgewicht mit B steht und ebenso B mit C, so stehen auch A und C miteinander im thermischen Gleichgewicht.

Der Nullte Hauptsatz rechtfertigt das Konzept der Temperatur und die Funktion eines Thermometers, eines Geräts zur Temperaturmessung. Dazu nehmen wir an, dass B eine Glaskapillare ist, die eine Flüssigkeit (etwa Quecksilber) enthält, welche sich bei Erwärmung sichtbar ausdehnt. Wenn nun B mit A in Kontakt gebracht wird, nimmt die Quecksilbersäule in B eine bestimmte Länge an. Aus dem Nullten Hauptsatz können wir nun Folgendes ableiten: Falls die Quecksilbersäule bei Kontakt von B mit C dieselbe Länge wie beim Kontakt von B mit A behält, tritt keine Zustandsänderung beim Kontakt von A mit C auf – unabhängig von der Zusammensetzung der beiden Systeme. Somit ist die Länge des Quecksilberfadens ein Maß für die Temperatur von A bzw. C.

Physikalische Chemie

Подняться наверх