Читать книгу ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков - Страница 4

2. История заблуждений

Оглавление

Беспрецедентная череда неудач, крушений тайных надежд и поражений в затянувшемся на века штурме неприступной крепости, именуемой «Великая теорема Ферма», обернулись для науки таким кошмаром, который поставил под сомнение даже само её существование. Подобно свирепой эпидемии чумы ВТФ не только лишала рассудка многочисленных ферматистов-любителей, учёных и непризнанных гениев, но и очень даже поспособствовала тому, чтобы вся наука целиком оказалась ввергнутой в пучину неуправляемого хаоса.

Уже три с половиной столетия прошло после первой публикации ВТФ и 25 лет после того, как было объявлено, что в 1995 г. эту проблему якобы решил профессор Принстонского университета США Эндрю Вайлс (Andrew Wiles)6. Однако в очередной раз оказалось, что это «эпохальное» событие не имеет к ВТФ вообще никакого отношения!7 «Доказательство» Вайлса держится лишь на идее, которую предложил немецкий математик Герхард Фрай (Gerhard Frey). Её оценили как гениальную, но видимо только потому, что это была элементарная и даже очень распространённая ошибка!!! Вместо того, чтобы доказать невозможность уравнения Ферма an+bn=cn в целых числах при n>2, доказывается лишь его несовместимость в системе с уравнением y2=x(x−an)(x+bn). Подобным способом можно доказывать вообще всё что угодно. Предъяви эту же работу кто-нибудь из студентов, любой из профессоров быстро вывел бы его на чистую воду, указав на очевидную подмену предмета доказательства.

Рисунок 12. Эндрю Вайлс


Рисунок 13. Герхард Фрай


Тем не менее эта суперсенсационная новость с большой помпой отмечалась в ведущих мировых СМИ. Самая влиятельная газета США «Нью-Йорк Таймс» сообщила об этом прямо на титульной полосе … на целых 2 года раньше появления самого «доказательства»!!!

Рисунок 14. «Нью Йорк Таймс» от 24.06.1993 г. со статьёй о решении проблемы ВТФ


Эндрю Вайлс как автор «доказательства» стал членом Французской академии наук и лауреатом аж 18-ти самых престижных премий!!! Для освещения этого знаменательного события британская телекомпания BBC выпустила восторженный фильм, а также был приглашён писатель Саймон Сингх (Simon Singh), опубликовавший в 1997 году книгу под названием «Великая теорема Ферма. История загадки, которая занимала величайшие умы мира на протяжении 358 лет».

Рисунок 15. Саймон Сингх


Если бы Сингх самостоятельно готовил эту книгу, то у него возникло бы столько вопросов, что он и за 20 лет бы не справился. Конечно же, ему всеми силами помогали те самые герои профессора, прославляемые в фильме BBC, потому-то книга удалась на славу и действительно читать её очень интересно даже тем, кто знает о математике только понаслышке. Первое, что сразу бросается в глаза, так это то, что в книге допущена арифметическая ошибка (!), причём не где-нибудь, а в самом её названии! Ведь хорошо известно, что «величайшие умы» ничего не могли знать о ВТФ до 1670 г., когда её формулировка впервые появилась в книге, изданной сыном Ферма Клеманом Самюэлем, «Арифметика Диофанта с комментариями К. Баше и замечаниями П. Ферма»8 (см. Приложение V рис. 96). Но тогда должно быть не 358, а 325 лет, и выходит, что Сингх просто не заметил ошибку?

Однако не спешите с выводами! Эта ошибка не автора книги и вовсе не случайна. Те же самые профессора наперебой рассказывали Сингху о том, что якобы ещё в 1637 г.9 Ферма и сам обнаружил ошибку в своём доказательстве, но просто забыл вычеркнуть эту теорему в записях на полях книги. Кто придумал эту небылицу неизвестно, но многие учёные воспринимали её как известный факт и повторяли раз за разом в своих работах. Понять их можно, ведь иначе получалось, что Ферма оказался умнее их всех! Когда Эндрю Вайлс заявил (https://www.pbs.org/wgbh/nova/article/andrew-wiles-fermat/): «Я не верю, что у Ферма было доказательство», то это мнение было вовсе и не ново, т.к. об этом много раз твердили многие очень авторитетные учёные. Однако это же явно противоречит логике. Получается, что Ферма каким-то невероятным образом умудрился сформулировать совсем не очевидную теорему, не имея на то вообще никаких оснований10.

Другое противоречие в книге Сингха – это явное несоответствие между документальными фактами и оценками консультантов личности Ферма как учёного. Нужно отдать должное Сингху в том, что он добросовестно, (хотя и не полно), изложил ту часть творчества Ферма, которая относится к его вкладу в науку и подтверждается документально. Особенно следует отметить то, что арифметика названа здесь «самой фундаментальной из всех математических дисциплин». Одного только перечисления достижений Ферма в науке вполне достаточно, чтобы не сомневаться, что учёных такого уровня за всю историю науки было считанные единицы.

Но если это так, то зачем же нужно было додумывать то, что никакими фактами не подтверждается и лишь искажает реальную картину? Уж очень это похоже на стремление убедить всех в том, что Ферма не мог доказать ВТФ, поскольку это якобы подтверждается историками. Но историки получали сведения от тех самых математиков, которые не справились с задачами Ферма и могли таким вот образом выражать своё недовольство. Вот так и появляются всякие взятые ниоткуда рассуждения о том, что Ферма был учёным-любителем, арифметика привлекала его лишь головоломками, которые он «придумывал», ВТФ он тоже «придумал», глядя на уравнение Пифагора, а свои доказательства он не желал публиковать из-за опасений критики коллег.

Вот нате вам, получите! Вместо величайшего учёного и основоположника теории чисел, а также комбинаторики, (вместе с Лейбницем), аналитической геометрии, (вместе с Декартом), теории вероятностей, (вместе с Б. Паскалем), теории волновой оптики, (вместе с Гюйгенсом), дифференциального исчисления, (вместе с Лейбницем и Ньютоном), к наследию которого обращались в течение веков величайшие деятели науки, теперь вдруг появился «любитель» головоломок, который всего-то лишь получал удовольствие от того, что никто не может их решить. А раз арифметика – это головоломки, то вот эта самая фундаментальная из всех наук низводится до уровня составления кроссвордов. Такая «логика» явно шита белыми нитками, и чтобы в этом убедиться, достаточно просто указать на некоторые общеизвестные факты.

История не сохранила ни одного свидетельства того, что в период жизни и деятельности П. Ферма кто-нибудь решил хотя бы одну из его задач11. Это и стало основанием для оппонентов ещё в те времена сочинять о нём всяческие байки. В сохранившихся письмах, он сообщал, что уже три раза посылал доказательства своим респондентам. Но ни одно из них, естественно, до нас не дошло, т.к. получатели писем Ферма, конечно же, не желали выглядеть для потомков так, будто не справились с простенькими задачками.

Другой неоспоримый факт – это то, что личный экземпляр Ферма книги «Арифметика» Диофанта 1621 г. издания с его рукописными замечаниями на полях никто из очевидцев никогда не видел!!! Ну просто прелюбопытнейшая получается картина. Критики Ферма на полном серьезе клюют на остроумную гасконскую шутку, что достопочтенный сенатор, (видимо, из-за нехватки у него бумаги!), записывает на полях книги гусиным пером точный и выверенный текст из тридцати шести латинских слов, но абсолютно не допускают того, что у него, (у величайшего учёного!), и в самом деле было «поистине удивительное доказательство» его собственной теоремы12.

Даже трудно себе представить, как были бы изумлены эти критики, узнав, что в действительности Ферма вообще никогда и не занимался поисками этого доказательства, т.к. в то время не мог знать, что именно нужно доказывать. Но как раз в последней фразе формулировки ВТФ, которая их так возмущала, есть ключевое слово, которое прямо указывает на то, каким образом он эту задачу решил. Получилось так, что учёный мир столетиями понапрасну изводил себя в поисках доказательства ВТФ, а сам Ферма никогда его не искал, а просто заявил, что он его открыл!13

Можно также напомнить оппонентам, твердящим о намеренном отказе Ферма публиковать свои работы, что, например, Декарт получил разрешение на публикации от самого его высокопреосвященства кардинала Ришелье. Для Ферма это было невозможно и об этом есть даже письменное (!!!) свидетельство, (см. текст на надгробной плите П. Ферма: «Vir ostentationis expers… − Он был лишен возможности публикаций…» См. Приложение V рис. 93-94). Тем не менее, даже находясь в таких условиях, он всё-таки подготовил к изданию «Арифметику» Диофанта, с добавлением своих 48-ми замечаний, одно из которых и получило название «Великая Теорема Ферма».

Издание должно было появиться в честь исторически значимого события – основания Французской академии наук, в подготовке которого участвовал и сам Ферма, переписываясь со своим давним коллегой из парламента Тулузы Пьером де Каркави (Pierre de Carcavy), ставшего королевским библиотекарем. Королевский указ о создании Французской академии наук готовил Каркави, а вносил его на подписание Людовику XIV всемогущий министр финансов Жан-Батист Кольбéр (Jean-Baptiste Colbert). Однако академия наук была создана лишь в 1666 г., т.е. только через год после смерти Ферма.

Математики очень славятся тем, какие они строгие педанты, формалисты и буквоеды, но, как только речь заходит о ВТФ, все эти качества сразу куда-то исчезают. Оппоненты Ферма, игнорируя общеизвестные факты, называли его то отшельником, (это сенатора-то из Тулузы!), то князем любителей, (это одного-то из основателей Французской академии наук!), и это несмотря на его вклад в науку, сопоставимый по своей значимости лишь с парой или тройкой самых выдающихся ученых за всю историю науки!

Не преминули они также ехидно указать на то, что о Ферма никто бы так и не узнал, если бы его задачами не заинтересовался величайший математик всех времен и народов Леонард Эйлер (Leonhard Euler). Но как раз это магическое имя и сыграло с ними злую шутку. Их безграничная вера в новаторские изыскания Эйлера была слишком слепой, чтобы заметить, что именно благодаря ему, наука получила такой мощный удар, от которого она не может оправиться до сих пор!

Рисунок 16. Леонард Эйлер


Математики не просто поверили Эйлеру, но и горячо поддержали его в том, что алгебра – это самая главная математическая наука, а вот арифметика является лишь одним из её элементарных разделов14. Задумка Эйлера была действительно превосходной, поскольку его алгебра, получившая новые возможности за счёт использования «комплексных чисел», должна была стать мощнейшим научным прорывом, который позволил бы не только расширить диапазон чисел от числовой оси до числовой плоскости, но и бóльшую часть всех вычислений сводить к решению алгебраических уравнений15.

Необходимость «комплексных чисел» математики объясняют очень даже просто. Чтобы решать абсолютно любые алгебраические уравнения нужно, (всего-то лишь!), сделать так, чтобы уравнение x2+1 = 0 стало разрешимым16. По-русски его можно назвать «Не пришей кобыле хвост!». Это уравнение совсем не безобидно, т.к. с практическими задачами оно никак не связано, а основы науки подрывает очень даже существенно. Тем не менее, дьявольское искушение на пустом месте создать нечто очень эффектное и грандиозное оказалось сильнее здравого смысла, и Эйлер решил продемонстрировать новые математические возможности на практике.

ВТФ, которую Эйлеру никак не удавалось доказать, отлично подходила бы для демонстрации возможностей новой чудо алгебры. Однако результат получился более чем скромным – вместо общего доказательства ВТФ удалось доказать только один частный случай для 3-й степени [8, 30]. Более амбициозно выглядело доказательство другой теоремы Ферма о единственном решении в целых числах уравнения y3=x2+2 [36]. Ведь это была задача ох какая трудная и её, как и ВТФ, в то время никто из математиков не мог решить. Несмотря на то, что сама возможность разрешимости любого алгебраического уравнения ещё не была доказана, эти демонстрации Эйлера были восприняты на ура. Оставалось лишь найти решение проблемы под названием «Основная теорема алгебры». С этой задачей блестяще справился в 1799 г. настоящий титан науки Карл Гаусс (Carl Gauß), который представил доказательство аж 4-мя разными способами!

Рисунок 17. Карл Фридрих Гаусс


Научное сообщество встретило все эти «достижения» бурными овациями. А как радовался нечестивый, так и не передать. Да уж, это надо же, как весь цивилизованный учёный мир загнал сам себя в тупик! Ведь очевидно, что для науки, которая на арифметику не опирается, никаких разумных ограничений не существует и последствия будут печальными, а от доминирования алгебры арифметика станет настолько трудной, что острословы язвительно назовут её наукой для элитарных математиков, в которой они могут демонстрировать остроту своего ума! Но сами-то учёные, ничего не подозревающие и преисполненные самых что ни есть наилучших побуждений, продолжали продвигать науку вперёд к новым высотам, причём так усердно, что толи ненароком, толи по недоразумению взяли, да и потеряли «Золотую теорему Ферма» (ЗТФ)! А ведь это было одно из самых впечатляющих открытий Пьера Ферма в арифметике, которым он очень гордился.

Случилось так, что третий в истории королевский математик Жозеф Лагранж (Joseph Lagrange) вместе со своим предшественником, вторым королевским, (и первым императорским!), математиком Леонардом Эйлером, доказал в 1772 году лишь один частный случай ЗТФ для квадратов, чем прославился на весь мир. Это замечательное достижение науки получило название «Теорема Лагранжа о четырёх квадратах».

Рисунок 18. Жозеф Лагранж


Наверное, это хорошо, что Лагранж два года не дожил до того момента, когда в 1815 г. совсем ещё молодой Огюстен Коши́ (Augustin Cauchy) представил своё общее доказательство ЗТФ для всех многоугольных чисел. Но тут вдруг произошло нечто ужасное, неизвестно откуда появился нечестивый и вставил свое фэ. И вот никакой тебе мировой славы, да ещё и полная обструкция со стороны коллег.

Рисунок 19. Огюстéн Коши́


И ничего уж тут не поделаешь, ну не взлюбили академики Коши и тихим сапом добились того, что это общее доказательство ЗТФ было проигнорировано и не попало в учебники. Также, как и доказательства Гаусса 1801 г. для треугольников и тех же квадратов никто не вспоминает, но вот зато в учебниках до сих пор по-прежнему и очень подробно излагается знаменитая теорема Лагранжа. Впрочем, после того как Google опубликовал факсимиле изданного во Франции доказательства Коши Золотой Теоремы Ферма [3] стало ясно, почему оно не было поддержано академиками (см. п. 3.5).

Рисунок 20. Мари́-Софи́ Жерме́н


Тем временем, учёные всего мира, воодушевившись этими грандиозными подвижками, так воспрянули, что замахнулись аж на саму ВТФ! К ним присоединилась ещё и знаменитая женщина, очень известная среди учёных и математиков Мари́-Софи́ Жерме́н (Marie-Sophie Germain). Эта талантливая и амбициозная мадмуазель предложила изящный способ, который применили сразу два гиганта математической мысли Лежён Дирихле́ (Lejeune Dirichlet) и Адриен Лежа́ндр (Adrien Legendre), чтобы доказать… только один частный случай ВТФ для пятой степени.

Рисунок 21. Лежён Дирихле́


Рисунок 22. Адриен Лежа́ндр


Ещё один такой же гигант Габриэль Ламе́ (Gabriel Lamé), сумел-таки сделать почти невозможное и получить доказательство высшей трудности… другого частного случая ВТФ для седьмой степени.

Рисунок 23. Габриэль Ламе́


Таким образом, вся эта элитарная четвёрка представителей из высшего общества учёных сумела доказать аж целых два (!) частных случая ВТФ [6,38].

Этим результатом можно было гордиться, поскольку даже Эйлер также смог доказать лишь два частных случая ВТФ для 3-ей и 4-ой степеней. В доказательстве для 4-ой степени он применил метод спуска, следуя в точности рекомендациям Ферма, (см. Приложение II). Этот случай особенно важен тем, что его доказательство действительно для всех чётных степеней, т.е. для получения общего доказательства ВТФ можно рассматривать только нечётные степени. Следует отметить, что именно Эйлер решил, (и даже существенно расширил!), почти все наиболее трудные задачи Ферма и если бы не он, то одно лишь имя Ферма могло бы вызывать у математиков настоящий озноб. Но только не у Софи́ Жермéн, которую совсем не устраивала ситуация с недоказанной ВТФ, и она даже отважилась предложить заняться этой задачей самому Гауссу! Но тот просто отмахнулся от неё, ответив, что ВТФ интересует его мало, а подобных утверждений, которые невозможно ни доказать, ни опровергнуть, можно найти сколько угодно.

Конечно, Гаусс и сам был бы рад услужить этой даме, но если бы он мог это сделать, то и уговаривать его было бы не нужно. Например, с помощью разработанной им «Арифметики вычетов», прообразом которой послужила «Малая теорема Ферма», было наглядно показано, как можно эффективно решать труднейшие задачи арифметики. В частности, только Гауссу удалось найти решение задачи Ферма о вычислении двух единственно возможных квадратов, сумма которых даёт заданное простое число типа 4n+1 [11, 25].

Характерная особенность Гаусса – это его неприязнь к сомнительным нововведениям. Например, вряд ли он мог бы представить себя создателем геометрии кривых пространств. Но когда он установил, что такая геометрия может иметь место и не содержать противоречий, то был этим очень озадачен. Он был уверен, что практического применения его находка иметь не может из-за отсутствия каких-либо реальных фактов, подтверждающих что-либо подобное, однако быстро нашёл хороший выход – просто помог опубликовать это открытие своему русскому коллеге Николаю Лобачевскому и сделал это так искусно, что никто даже не удивился, когда работу по неевклидовой геометрии российский профессор и ректор Казанского университета издал… в Берлине и на немецком языке! В будущем сомнения Гаусса подтвердились. Появились последователи и наводнили науку целой кучей подобных «открытий».

Несмотря на то, что своим доказательством «Основной теоремы алгебры» Гаусс поддержал Эйлера в продвижении его идеи применения «комплексных чисел», никаких других возможностей для подвижек в этом направлении он не обнаружил. Да и то, что продемонстрировал Эйлер, его также не впечатлило. Более того, даже современная наука ничего вразумительного по применению «комплексных чисел» предложить не может. Зато море всяческих «научных» трудов, исследований и учебников по этой теме явно неадекватно её истиной ценности. Гаусс как чувствовал, что с этими «числами» что-то неладно и добром это не кончится, потому в этом направлении и не работал.

Гром грянул в 1847 году, когда на заседании членов Французской академии наук Габриэль Ламе и Огюстен Коши сообщили, что их доказательства ВТФ уже готовы к рассмотрению на конкурсе. Однако, когда для выявления победителя уже можно было вскрыть полученные от них запечатанные конверты, всех опустил на грешную землю немецкий математик Эрнст Куммер (Ernst Kummer). В его письме сообщалось, что доказательство ВТФ на основе «комплексных чисел» невозможно, из-за неоднозначности их разложения на простые множители17.

Рисунок 24. Эрнст Куммер


Вот тебе на! Эти-то самые «комплексные числа» оказывается вовсе и не числа!!! И нет бы заметить, наконец, что после того, как из-под науки вышибли арифметику, она висит в воздухе, не имея никакой прочной основы. Да и ошибки великих в своих последствиях тоже экстремальны, и они начинают корёжить науку, да так, что она, вместо целостной системы знаний, создает кучу не связанных между собой фрагментов.

Если уж так случилось, то ещё тогда в 1847 году эти самые «комплексные числа» нужно было со всеми почестями торжественно похоронить. Но вот с этим делом как-то совсем не заладилось и неупокоенные души давно умерших теорий оказываются настолько живучими, что их никакими силами не удаётся изгнать из учебников и профессорских лекций. Они будут кочевать по разным книгам и справочникам, авторы которых будут в полном неведении, насколько их труды обесцениваются от этого никому не нужного балласта.

В упомянутой книге Сингха хорошо показано как неоднозначность разложения составных целых чисел на множители лишает возможностей построить логические заключения в доказательствах и там же сообщается о том, что теорема об однозначности такого разложения для натуральных чисел была дана ещё в «Началах» Евклида. Конкретная книга и место расположения в теоремы не указано, поэтому найти нужный текст довольно сложно, однако это действительно оказалось так18.

Рисунок 25. Евклид


«Начала» Евклида» – очень старая книга с архаичной терминологией, в которой эта исключительно важная для науки теорема как-то затерялась и о ней просто забыли. Первым обнаружил пропажу Гаусс. Он сформулировал её вновь и дал доказательство, содержавшее на удивление простую и даже детскую ошибку, при которой в качестве аргументации используется как раз то, что нужно доказать, (см. п. 3.3.1).

Но ведь это же не рядовая теорема, на ней держится вся наука! А что же у Евклида? О, Господи! По сути, его доказательство такое же, как у Гаусса, т.е. ошибочное!!! Рассказать кому, так ведь и не поверят! На одном и том же месте споткнулись аж три гиганта науки: Евклид, Эйлер и Гаусс! Но тогда выходит, что вся эта наука липовая, а теперь, благодаря книге Сингха и вопреки всем благим намерениям автора, эта наводившая на всех ужас ВТФ, которая теперь даже в теории стала вообще недоказуемой, рассвирепела так, что, как истинное чудовище, одним махом обесценила все вековые труды учёных! Но они-то живут не в сказочном, а в настоящем королевстве кривых зеркал, и сами-то ещё ничего об этом не знают.

Фиаско, которое потерпели академики Коши и Ламе, не привело к отказу от использования в науке суррогатов чисел, тем более, что сокрушивший их работы Куммер нашёл способ, позволяющий, (при небольшой модернизации), доказывать ВТФ для любого конкретного частного случая. До окончательной победы над ней оставалась лишь самая малость – получить единое общее доказательство. С тех пор прошло уже 170 лет, а воз и ныне там. Поддержанные в своё время гением Эйлера «комплексные числа» и в наши дни представляются как некое расширение понятия числа. Это выглядит очень внушительно и солидно, но всё же требует чёткого определения самого этого понятия. А вот как раз с этим дела совсем плохи.

Студенты, интуитивно чувствующие, что их понапрасну мучают той самой филькиной грамотой про какие-то несуществующие числа, возьми, да и спроси: «А что такое число?» Им и невдомёк, что ни один профессор ничего путного ответить на этот вопрос не может, даже если он перечитал всё, что только есть по математике. Один из них всё же не выдержал издевательских намеков и издал целую книжку под названием «Что такое число?» [13, 29]. В ней он столько всего понаписал, что студенты чётко усвоили – такой вопрос лучше не задавать.

Тем временем учёные продолжали двигать науку вперед, не заморачиваясь на таких мелочах как сущность понятия числа. Так они насоздавали целую кучу всяких новых алгебр, пользуясь тем, что никаких препятствий на этом пути не было. Но они не были продолжением вот той, настоящей, основателем которой был первый королевский математик Франсуа Вие́т (François Viète), служивший советником при дворе французского короля Генриха III. Но если эти новые алгебры особые, то их терминология и основы тоже особые.

Рисунок 26. Франсуа Вие́т


Так потихоньку в науке стал формироваться некий особенный птичий язык, понятный только авторам этих самых что ни есть новаторских разработок. Дошло даже и до того, что стали появляться математические сообщества, творящие науку только для самих себя любимых и вдобавок к этому из ничего стали появляться новейшие числа: «гиперкомплексные», «кватернионы», «октонионы», и т.п. Правда, впечатление от новинок портил нет-нет, да и высовывающийся неизвестно откуда тот самый кобылий хвост19. Получать этим хвостом по фэйсу не очень-то приятно, но это уже издержки профессии. В стремлении уйти от таких издержек, был найден просто блестящий выход из затруднений с определением сущности понятия числа. Учёные наконец-то осознали, что его нужно выводить из других более простых понятий, например, таких, как понятие «множество». Всё оказалось так просто! Множество – это то, чего много. Ну разве не понятно? Однако опять получилось так, что без пустых множеств никак не обойтись, а в этом случае много может означать ничего и снова возникает вопрос, так что же это такое множество, число или нет?

Георг Кантор (Georg Cantor) разработал свою теорию множеств, которую другие математики, такие как, например, Анри Пуанкаре́ (Henri Poincaré), обзывали всякими нехорошими словами и никак не хотели признавать. Но вдруг неожиданно для всех респектабельное «Лондонское королевское общество», (английская академия наук), в 1904 году взяло, да и наградило Кантора своей медалью. Так вот оказывается, где решаются судьбы науки!20 И всё было бы хорошо, да вдруг опять стряслась ещё одна беда. Откуда ни возьмись, в этой самой теории множеств стали появляться непреодолимые противоречия, о которых также очень подробно рассказывается в книге Сингха. В научном сообществе сразу все переполошились и стали думать, как эту проблему решать. А она упёрлась как в стенку и никак не хотела решаться. Все как-то приуныли, но потом всё-таки опять воспряли.

Рисунок 27. Георг Кантор


Ведь теперь-то за дело взялся сам Давид Гилберт (David Hilbert), великий математик, который первым решил труднейшую проблему Варинга, имеющую прямое отношение к ВТФ21. Любопытно, также и то, что Гилберт повторил опыт Эйлера, навеянный, по всей видимости, проблемой ВТФ. Похоже на то, что у Эйлера в какой-то момент стали возникать сомнения в том, что ВТФ вообще доказуема и в качестве аналогичного примера он взял, да и предположил, что уравнение a4+b4+c4=d4 также, как и уравнение Ферма an+bn=cn при n>2, в целых числах неразрешимо, но в конечном итоге всё-таки выяснилось, что он ошибся22.

Рисунок 28. Давид Гилберт


По примеру Эйлера в канун XX столетия Гилберт предложил научному сообществу 23 проблемы, которые, по его мнению, в обозримом будущем вряд ли будут решены. Однако коллеги Гилберта справились с ними довольно быстро, а гипотеза Эйлера продержалась почти до XXI века и была опровергнута только с помощью компьютеров, о чём также рассказано в книге Сингха. Вот так подозрение, что ВТФ была всего лишь предположением её автора, лишилось всяких оснований.

С преодолением противоречий в теории множеств Гилберт не справился, да и не мог это сделать, поскольку проблема эта вовсе не математическая, а информационная, и решать её рано или поздно должны были компьютерщики, а когда это произошло, то они на удивление очень легко, (и абсолютно верно), нашли решение, просто ввели запрет на замкнутые цепочки ссылок23. Ясно, что Гилберт тогда не мог об этом знать и решил, что наиболее надёжный заслон противоречиям можно обеспечить с помощью аксиом. Но ведь аксиомы-то не могут создаваться на пустом месте и должны из чего-то исходить, а это что-то есть число, но вот что это такое, ни тогда, ни сейчас никто толком объяснить не может.

Блестящий пример того, что можно натворить с аксиомами, изложен в той же самой книге Сингха. Очевидный казус с отсутствием четкой формулировки понятия числа может невзначай испортить любую радужную картину и с этим нужно что-то делать. Особенно неприятно это вылезает при обосновании тех же «комплексных чисел». Возможно, этим и было вызвано появление в книге приложения 8 под названием «Аксиомы арифметики», в котором 5 известных ранее аксиом, относящиеся к счёту, не упоминаются вообще, (иначе задумка не пройдет), а те, которые определяют базовые свойства чисел, дополняются и появляется новая аксиома о том, что должны существовать числа n и k, такие, что n + k = 0 и вот теперь-то уже всё в ажуре!

Конечно, сам Сингх никогда не додумался бы до такого. Здесь отчетливо просматривается помощь консультантов, которые почему-то забыли сменить название приложения, ведь это теперь уже не аксиомы арифметики, поскольку от неё теперь остались только рожки да ножки24. Школьная арифметика, которая долгое время, итак, еле держалась на таблице умножения да на пропорциях, теперь уж совсем оскудела. Вместо неё теперь вовсю осваивают калькулятор и компьютер. Если такой вот «прогресс» продолжится и дальше, то переход к жизни на деревьях для нашей цивилизации произойдёт очень быстро и естественно.

На этом фоне действительно выдающееся научное открытие было сделано в Википедии, которая по искусству и масштабам дезинформации просто не имеет себе равных. Долгое время многие думали, что существует всего четыре действия арифметики – это сложение и вычитание, умножение и деление. Ан нет! Есть еще возведение в степень и… извлечение корня (???). Авторы статей, которые выдали нам это «знание» через Википедию, явно оплошали, т.к. извлечение корня – это тоже самое возведение в степень, только не в целую, а в дробную. Нет, конечно, они знали об этом, но вот о чём они и не догадывались, так это о том, что это действие арифметики было ими списано у самого Эйлера из той самой книжки о его чудо алгебре25.

Правильное название шестого действия арифметики – это логарифм, т.е. вычисление показателя степени (x) по заданному числу (y) и основанию степени (z), т.е. logzy=x. Как и в случае с названием книги Сингха эта ошибка вовсе не случайна, поскольку в рамках арифметики целых чисел логарифмами толком никто не занимался. Если это и случится когда-нибудь, то не раньше, чем лет через пятьсот! А вот что касается действий со степенями, то ситуация здесь ненамного лучше, чем с логарифмами. Если умножение и деление степеней, также, как и возведение степени в степень не представляют каких-то трудностей, то сложение степеней – это пока ещё тёмный лес даже для профессоров.

Прояснение в этом вопросе начинается с ВТФ, которая утверждает, что сумма двух целых чисел в одинаковой целой степени, больше второй, не может быть целым числом в той же степени. В этом смысле эта теорема вовсе никакая не головоломка, а одно из базовых положений, (однозначно!), регламентирующих сложение целых степеней, поэтому она имеет для науки фундаментальное значение26. Тот факт, что ВТФ до сих пор не доказана, свидетельствует лишь о состоянии сегодняшней науки, которая разваливается прямо на глазах. Она не может себе даже и представить, что если бы доказательство от самого Ферма дошло до нас, то оно давно уже преподавалось бы в средней школе.

Многие, конечно, воспримут это как сказки, однако разве что совсем уж слепые могут не замечать, что за всей этой нелепой и несуразной историей с ВТФ так явно и неприкрыто торчат уши нечестивого, что достаточно ему было лишить человеческую цивилизацию доступа к работам Ферма по арифметике, как она сразу оказалось полностью дезориентированной. Вместо того, чтобы развивать науку, её стали усиленно разрушать, причём с самыми что ни есть благими намерениями. Но особое рвение у людей появляется тогда, когда возникает какой-нибудь материальный стимул.

Техасский предприниматель Эндрю Биэл (Andrew Beal)27 выдвинул свою гипотезу, доказательство которой якобы может вывести на очень простое доказательство ВТФ. Поскольку за решение этой задачи предлагалось сначала 5 тыс. $, затем 100 тыс. $, а с 2013 года – целый миллион, то, естественно, нашлось множество желающих, которые усердно принялись эту задачу решать. Однако в условиях, когда арифметика уже давно перестала быть первоосновой всех знаний и до сих пор не знает, что такое число, всё оказалось перевёрнутым с ног на голову, т.е. один энтузиаст-любитель смог поставить на уши целиком всю официальную науку, да так, что она по сути уже признала опыт барона Мюнхгаузена с поднятием самого себя за шкирку и при этом даже не пыталась хоть как-то скрыть свою собственную несостоятельность (см. п. 4.5).

Рисунок 29. Эндрю Биэл


Вот так в напряжённых и неустанных поисках доказательства ВТФ почему-то никому и в голову не пришло просто взять, да и поискать рукописи Ферма с выкладками и расчётами, без которых он никак не мог обойтись28. Впрочем, опять-таки из книги Сингха мы узнаём, что такая мысль появилась у Эйлера, который попросил своего друга Клеро, живущего в Лозанне, (город, находящийся совсем не далеко от Тулузы), поискать в доме Ферма хотя бы клочок бумаги, с указаниями на доказательство ВТФ. Но ничего не нашли, а ведь искали-то совсем не то! Нужно-то было искать тайник!!!

Вот тебе раз, час от часу не легче! Что ещё за тайник? … Ах да! Ведь только те работы Ферма сохранились, которые им самим были уже подготовлены для издания, т.к. иначе вряд ли они могли быть опубликованы. Но вот все рабочие рукописи почему-то пропали. Это выглядит очень странно и не исключено, что они могут до сих пор находиться в тайнике, который Ферма оборудовал для хранения вещдоков, необходимых ему для работы в качестве сенатора и судьи высокого ранга. Было вполне разумно хранить там расчёты и доказательства, поскольку научные достижения Ферма могли бы существенно повредить его основной работе, если были бы обнародованы до учреждения Французской Академии наук29.

Если бы мы могли хоть как-то заглянуть в этот тайник, что же мы там увидим? Для начала попробуем найти там какие-нибудь несложные задачи. Вот, например, та, которую Ферма мог бы предложить сегодня для учащихся средней школы:

Разделить число xn−1 на x−1, или число x2n−1 на x±1, или число x2n+1+1 на x+1.

Очевидно, что учащиеся, со знанием решения такой задачи, будут просто на голову превосходить сегодняшних школьников, которых обучают способам определения делимости только на некоторые маленькие числа. Но вот если они ещё будут знать парочку теорем Ферма, то запросто смогут решить и более трудную задачу:

Найти две пары квадратов, каждая из которых в сумме есть одно и то же число в седьмой степени, например,

2217=1511140542+53969305 2=827366542+137487415 2

По сравнению с предыдущей задачей, где вычисления вообще не нужны, в решении этой задачи даже с компьютерным калькулятором придётся с полчаса повозиться, чтобы достичь результата, при этом, кроме понимания сути решения задачи, нужно проявить ещё изрядную долю терпения, упорства и внимания. А кто понимает суть решения, тот сможет найти и другие решения этой задачи30.

Конечно, подобные задачи могут вызвать настоящий шок у сегодняшних учащихся и особенно у их родителей, которые будут даже требовать не «сушить мозги» детям. Но если детские мозги не заполнять элементарными знаниями и не тренировать их с помощью решения соответствующих задач, то они отсохнут и сами собой. Об этом свидетельствует статистика неуклонного снижения показателя IQ сегодняшних учащихся по сравнению с их предшественниками. Ведь на самом деле приведённые выше задачки – это лишь разминка для юного поколения, а вот настоящий фурор дети могли бы произвести на математиков, предложив им простенькие теоремы Ферма о волшебных числах, (см. п. 4.4.). И это ещё большой вопрос, по силам ли эти теоремы сегодняшним профессорам, или им опять потребуется лет триста и повторится история с ВТФ? Впрочем, шансы у них, в отличие от прежних времён, очень велики, т.к. волшебные числа – это прямое следствие того самого «поистине удивительного» доказательства ВТФ, о существовании которого мы имеем прямое письменное свидетельство от самого Ферма.

Реконструкция этого доказательства в кратком виде была опубликована ещё в 2008 г. [30], однако нечестивый был начеку и обстряпал всё так, что современная наука, дезориентированная ложными представлениями о том, что проблема давно решена, не обратила на это событие никакого внимания. Однако всё тайное рано или поздно станет явным и решающее слово, несмотря ни на что, всё равно останется за наукой. Вопрос теперь только в том, когда она, наконец, опомнится и придёт в себя. Чем дольше она будет находиться в благостном состоянии забытья, тем скорее наступят страшные события, уже сейчас начинающие сотрясать наш мир как никогда прежде.

Для того чтобы наука могла одержать вполне заслуженную ею победу над торжествующим сегодня мраком невежества и массовой дезинформации, ей и нужно-то совсем немного. Для начала просто поискать тот самый тайник, в котором могут обнаружиться такие сокровенные тайны науки, которые за три с половиной столетия ничуть не потеряли своей актуальности 31. Даже если найденные в тайнике бумаги окажутся нечитабельными, то всё равно сам факт существования тайника станет свидетельством того, что наука идёт в нужном направлении и результаты не заставят себя долго ждать.

Кое-что в этом направлении мы уже сделали, когда восстановили запись ВТФ на полях «Арифметики» Диофанта (см. рис. 5 и перевод в конце п. 1). Теперь нужно во что бы то ни стало получить полную картину всей последовательности событий, приведших к открытию ВТФ в её конечной формулировке, опубликованной в 1670 г. Это будет совсем не просто, но раз уж мы ввязались в эту историю, то отступать теперь некуда и придётся поднапрячь все наши силы, чтобы достичь цели. Благо, что у нас есть для этого все дарованные нам свыше возможности получить вожделенный доступ к тайнику тулузского сенатора.

6

Это была поистине грандиозная мистификация, организованная Принстонским университетом США в 1995 г. после публикации в собственном коммерческом издании «Annals of Mathematics» «доказательства» ВТФ Э. Вайлса и мощнейшей информационной кампанией в СМИ. Казалось бы, такое сенсационное научное достижение должно было быть выпущено массовым тиражом по всему миру. Ан нет! Понимание этого текста доступно только специалистам с соответствующей подготовкой. Вот это да! Теперь даже то, что нельзя понять, может считаться доказательством! Однако справедливости ради следует признать, что даже такое откровенно циничное глумление над наукой, представленное как величайшее «научное достижение» светил университета из Принстона, и в подметки не годится блистательной афере их земляков из Национального космического управления NASA, в результате которой весь цивилизованный мир в течение половины столетия ничуть не сомневался в том, что американские астронавты действительно побывали на Луне!

7

«Доказательство», которое Э. Вайлс готовил в течение семи лет упорного труда и опубликовал аж на 130 (!!!) журнальных страницах, превзошло все разумные пределы научного творчества и, конечно же, его ожидало неминуемое горькое разочарование. Ведь такой внушительный объём казуистики, понятной только её автору, ни по форме, ни по содержанию никак не подходит для того, чтобы представлять это в качестве доказательства. Но тут произошло самое настоящее чудо. Вдруг невесть откуда появился сам всемогущий нечестивый! Тут же нашлись влиятельные люди, подхватившие «гениальные идеи» и развернувшие бурную пиар кампанию. И вот тебе мировая слава, множество титулов и премий! Открыты двери в самые престижные учреждения! Но вот такого чуда даже и врагу не пожелаешь, ведь рано или поздно афера-то всё равно откроется.

8

Если бы эта книга была опубликована при жизни Ферма, то его просто порвали бы на куски, т.к. в своих 48 замечаниях он не дал доказательства ни одной из своих теорем. Но в 1670 г. т.е. через 5 лет после его смерти расправляться было не с кем и маститым математикам пришлось самим искать решения предложенных им задач. С этим как-то уж совсем не задалось и, конечно, многие из них не могли простить Ферма такой дерзости. Не забылось и то, что ещё при жизни он дважды устраивал вызовы английским математикам, с которыми те явно не справились, несмотря на его великодушное признание их достойными соперниками в письмах, полученных ими от Ферма. Только через 68 лет после первой публикации «Арифметики» Диофанта с замечаниями Ферма ситуация, наконец-то, сдвинулось с мёртвой точки, когда величайший гений науки Леонард Эйлер доказал частный случай ВТФ для n=4, применив метод спуска в точном соответствии с рекомендациями Ферма (см. Приложение II). Позже, благодаря Эйлеру, получили решения и другие задачи, а вот ВТФ так никому и не покорилась.

9

В пункте 2-30 письма Ферма к Мерсенну ставится задача: «Найти два квадрато-квадрата, сумма которых равна квадрато-квадрату, или два куба, сумма которых есть куб» [9, 36]. Датировка этого письма в издании Таннери вызывает сомнения, т.к. оно было написано после писем с более поздней датировкой. Поэтому вероятнее всего оно было написано в 1638 г. Отсюда делается вывод, что ВТФ появилась в 1637 году??? Но разве у ВТФ такая формулировка? Даже если эти две задачи есть частные случаи ВТФ, то как же можно приписывать Ферма то, о чём в то время он вряд ли мог даже догадываться? Кроме того, на неразрешимость задачи о разложении куба на сумму двух кубов впервые указал арабский математик Абу Мухаммед аль Худжанди ещё в X столетии [36]. А вот неразрешимость такой же задачи с биквадратами является следствием решения задачи из пункта 2-10 того же письма: «Найти прямоугольный треугольник в числах, площадь которого равнялась бы квадрату». Способ доказательства Ферма даёт в своем 45-м замечании к «Арифметике» Диофанта, которое начинается так: «Если бы площадь треугольника была квадратом, то были бы даны два квадрато-квадрата, разность которых была бы квадратом». Таким образом, в то время постановка этой задачи и подход к её решению сильно отличались даже от частного случая ВТФ.

10

Чтобы сомнений не возникало, были предприняты попытки как-то «обосновать» то, что у Ферма не могло быть доказательства, упоминаемого в оригинальном тексте ВТФ. См. например,

https://cs.uwaterloo.ca/~alopez-o/math-faq/node26.html (Did Fermat prove this theorem?).

Подобная «аргументация» никому из здравомыслящих людей, имеющих отношение к науке, и в голову не придёт, т.к. это даже в принципе не может быть убедительно. Ведь таким способом можно приписать Ферма любую галиматью. Но инициаторы подобных вбросов явно не учли, что это и есть свидетельство организованной и срежиссированной информационной кампании со стороны тех, кто был заинтересован в продвижении «доказательства» Вайлса.

11

Исключением является один из величайших английских математиков Джон Валлис (John Wallis) см. п. 3.6.

12

Очевидно, что если бы речь шла только о формулировке ВТФ, то было бы очень неразумно записывать её на полях книги. Но сетования Ферма на узкие поля повторяются и в других замечаниях, например, в 45-м, в конце которого он добавляет: «Полное доказательство и пространные объяснения не могут поместиться на полях из-за их узости» [9, 36]. А ведь это замечание занимает целую печатную страницу! Конечно, он ничуть и не сомневался, что его гасконский юмор будет оценён по достоинству. Когда его сын Клеман Самюэль, который, естественно, обнаружил несоответствие пометок на полях подготовленным к публикации замечаниям, то совсем этим не был удивлён, поскольку для него было очевидно, что сразу по ходу чтения книги дать точные формулировки задач и теорем совершенно невозможно. То, что этот экземпляр «Арифметики» Диофанта с рукописными пометками Ферма не дошёл до нас наводит на мысль, что уже тогда он был исключительно ценным раритетом, поэтому мог быть куплен другим владельцем за очень высокую цену и тот, конечно, хотя бы ради собственной безопасности не был настолько глуп, чтобы трубить об этом на весь мир.

13

Текст последней фразы ВТФ: «Я открыл тому поистине удивительное доказательство, но эти поля слишком узки, чтобы вместить его здесь», − явно не относится к сути содержания теоремы, однако для многих математиков он выглядит настолько вызывающе, что они всячески стремились показать, что это просто пустое бахвальство. При этом они не заметили ни юмора насчет полей, ни ключевого слова «открыл», которое здесь явно не подходит. Более подходящими словами здесь могли быть, скажем, «получил» или «нашёл». Если бы оппоненты Ферма обратили на это внимание, то им стало бы ясно, что слово «открыл» указывает на то, что доказательство он получил неожиданно, решая задачу Диофанта, к которой и было написано замечание, получившее название ВТФ. Таким образом, математики столетиями безуспешно искали доказательство ВТФ вместо того, чтобы искать решение задачи Диофанта о разложении квадрата на сумму двух квадратов. Им-то казалось, что задача Диофанта явно не стоит их внимания. А вот для Ферма она стала едва ли не самой трудной из всех, которыми он занимался, и когда он все-таки с ней справился, то в награду и получил открытие ВТФ.

14

Любопытно, что русскоязычное издание фундаментального труда Эйлера вышло в 1768 г. под названием «Универсальная арифметика», хотя оригинальное название «Vollständige Anleitung zur Algebra» должно переводиться как «Полное руководство по алгебре». Видимо, переводчики, (студенты Петр Иноходцев и Иван Юдин), резонно полагали, что уравнения исследуются здесь главным образом с точки зрения их решений в целых или рациональных числах, т.е. методами арифметики. Для сегодняшнего читателя это 2-х томное издание представляется как китайская грамота, поскольку вместе с сильно устаревшим русским языком и орфографией здесь просто неимоверное количество опечаток. Вряд ли сегодняшняя РАН как наследница «Императорской академии наук», издавшей этот труд, понимает его истинную ценность, иначе он давно был бы переиздан в современном и общедоступном виде.

15

Здесь есть аналогия между алгеброй и аналитической геометрией Декарта и Ферма, которая выглядит более универсальной по сравнению с геометрией Евклида. Тем не менее, арифметика и геометрия Евклида являются фундаментами, на которых только и могут появиться алгебра и аналитическая геометрия. В этом смысле идея Эйлера рассматривать все вычисления сквозь призму алгебры заведомо ущербна. Но его логика была совсем иной. Он понимал, что если наука будет развиваться только путём увеличения разновидностей уравнений, которые она способна решать, то рано или поздно она зайдет в тупик. И в этом смысле его исследования представляли для науки огромную ценность. Другое дело, что их алгебраическая форма была воспринята как магистральный путь развития и это привело в дальнейшем к разрушительным последствиям.

16

Здесь-то и возникает понятие «числовой плоскости», где по оси x располагаются действительные числа, а по оси y мнимые, т.е. те же действительные, только умноженные на «число» i= √-1. Но тогда между этими осями получается противоречие – на действительной оси множитель 1n является нейтральным, а на мнимой оси множитель in нет, а это не согласуется с базовыми свойствами чисел. Если уж вводится число i, то оно должно присутствовать на обеих осях, но тогда нет никакого смысла введения второй оси. Вот и выходит, что с точки зрения базовых свойств чисел эфемерное создание в виде числовой плоскости – полная бессмыслица.

17

Согласно основной теореме арифметики разложение любого натурального числа на простые множители всегда однозначно, например, 12=2×2×3, т.е. иными простыми множителями это число, как и любое другое, представить невозможно. Но для «комплексных чисел», в общем случае однозначность утрачивается, например, 12=(1+√–11)×(1+√–11)=(2+√–8)×(2+√–8). Фактически это означает крушение науки в самих ее основах. Однако общепринятых критериев, (в виде аксиом), того, что можно относить к числам, а что нет, как не было, так и нет до сих пор.

18

Теорема и ее доказательство даётся в «Началах» Евклида книга IX, предложение 14. Без этой теоремы решение преобладающего множества арифметических задач становится либо неполным, либо вообще невозможным.

19

Советский математик Лев Понтрягин показал, что эти «числа» не обладают базовым свойством коммутативности, т.е. для них ab ≠ ba [34]. Следовательно, одно и то же такое «число» нужно представлять только в виде, разложенном на множители, иначе в нём будут одновременно разные величины. Когда в оправдание подобных творений говорят, что математикам не хватает каких-то чисел, то на деле это может означать, что им явно не хватает разума.

20

Если какой-то очень уважаемый общественный институт поощряет таким образом развитие науки, то что на это можно возразить-то? Однако вот такая возникающая невесть откуда щедрость и бескорыстность со стороны непонятно откуда взявшихся благодетелей выглядит как-то странно, если не сказать заведомо предвзято. Ведь с давних пор хорошо известно, откуда берутся и куда приводят подобные «благие намерения», да и результат этих деяний тоже очевиден. Чем больше возникает учреждений для поощрения учёных, тем в большей степени реальная наука оказывается в руинах. Чего стоит одна только нобелевская премия за «открытие», подумать только … ускоренного разбегания галактик!!!

21

Проблема Варинга – это утверждение о том, что любое натуральное число N представимо в виде суммы одинаковых степеней xin, т.е. в виде N=x1n+ x2n+…+ xkn. Впервые её очень сложным способом доказал Гилберт в 1909 году, а в 1920 г. математики Харди и Литлвуд упростили доказательство, но их методы ещё не относилось к элементарным. И только в 1942 г. советский математик Ю. В. Линник опубликовал арифметическое доказательство, применив метод Шнилермана. Теорема Варинга – Гилберта имеет фундаментальное значение с точки зрения сложения степеней и не противоречит ВТФ, т.к. в ней нет ограничений количества слагаемых.

22

Контрпример, опровергающий гипотезу Эйлера, представляется как

958004+2175194+4145604=4224814

Другой пример

26824404+153656394+187967604=206156734.

Для пятой степени всё значительно проще

275+845+1105+1335=1445.

Возможно также, что может быть разработан и общий метод подобных вычислений, если удастся получить соответствующее конструктивное доказательство проблемы Варинга.

23

Конечно же, это вовсе не означает, что компьютерщики лучше разбираются в этой проблеме, чем Гилберт. У них просто не было иного выхода. Ведь замкнутые ссылки зацикливаются, а это приведёт к зависанию компьютера.

24

Аксиома о том, что сумма двух целых положительных чисел может быть равна нулю, явно не относится к арифметике, т.к. с натуральными или производными от них числами это явно невозможно. Но если есть только алгебра, а арифметики нет, то и не такое станет возможным.

25

Любопытно, что даже Эйлер, (видимо по оплошности), назвал извлечение корня операцией обратной по отношению к возведению в степень [8], хотя и отлично знал, что это не так. Но ведь это и не секрет, что даже особо одарённые люди часто путаются в очень простых вещах. Эйлер явно не испытывал тяги к формальным построениям основ науки, поскольку у него всегда было в избытке всяких других идей. Он-то думал, что с формальностями разберутся и другие, а получилось так, что именно отсюда и выросла самая большая проблема.

26

Это очевидно хотя бы по факту того, в какой мощный толчок для развития науки воплотились бесчисленные попытки доказать ВТФ. Кроме того, доказательство ВТФ, полученное Ферма, открывает путь к решению уравнения Пифагора новым способом (см. п. 4.3) и волшебным числам типа a+b–c=a2+b2–c2 (см. п. 4.4).

27

В русскоязычном разделе «Википедии» эта тема названа «Гипотеза Била». Но поскольку имя автора в оригинале Andrew Beal, то мы будем использовать название «Гипотеза Биэла», чтобы избежать путаницы между именами Beal (Биэл) и Bill (Бил).

28

В письме Ферма к Мерсенну от 15.06.1641г. сообщается следующее: «Я пытаюсь как можно более полно удовлетворить любопытство г. де Френикля… Однако он просил меня прислать решение одного вопроса, что я откладываю до тех пор, пока не вернусь в Тулузу, так как я теперь нахожусь в деревне, где мне понадобилось бы много времени, чтобы сделать заново то, что я написал по этому поводу и что оставил в своем кабинете» [9, 36]. Это письмо – прямое свидетельство того, что Ферма в своей научной деятельности никак не мог обходиться без своих рабочих записей, которые, судя по дошедшим до нас документам, были весьма объемистыми и их вряд ли можно было постоянно иметь при себе в различных поездках.

29

Если бы Ферма дожил до того времени, когда Академия наук была создана и стал бы академиком, то и в этом случае он вначале публиковал бы только постановки задач и, только спустя достаточно длительное время, основную суть их решения. Иначе могло бы создастся впечатление, что эти задачи слишком просты для того, чтобы их изучать и публиковать в таком дорогостоящем учреждении.

30

Для решения этой задачи нужно использовать формулу, которая выводится из (a2+b2)×(c2+d2)=a2c2+a2d2+b2c2+b2d2. Теперь добавляем 2abcd−2abcd=0 и тогда либо (a2c2+2abcd+b2d2)+(a2d2−2abcd+b2c2), либо (a2c2−2abcd+b2d2)+(a2d2+2abcd+b2c2). В итоге получаем тождество:

(a2+b2)×(c2+d2)=(ac+bd)2+(ad−bc)2=(ac−bd)2+(ad+bc)2

Далее берём два числа 4+9=13 и 1+16=17. Их произведение будет

13×17=221=(2×1+3×4)2+(2×4−3×1)2=(2×1−3×4)2+(2×4+3×1)2=142+52=102+112

Теперь если 2216=(2213)2=107938612, то требуемый результат будет

2217=(142+52)×107938612=(14×10793861)2+(5×10793861)2=1511140542+539693052=

=(102+112)×107938612=(10×10793861)2+(11×10793861)2=1079386102+1187324712

Но можно пойти и другим путём, если представить исходные числа, например, следующим образом: 2212=(142+52)×(102+112)=(14×10+5×11)2+(14×11−5×10)2=

=(14×10−5×11)2+(14×11+5×10)2=1952+1042=852+2042

2213=2212×221=(1952+1042)×(102+112)=(195×10+104×11)2+(195×11−104×10)2=

=(195×10−104×11)2+(195×11+104×10)2=3 0942+11052=8062+31852

2214=(1952+1042)×(852+2042)=(195×85+104×204)2+(195×204−85×104)2=

=(195×85−104×204)2+(195×204+85×104)2=377912+309402=46412+486202

2217=2213×2214=(30942+11052)×(377912+309402)=

=(3094×37791+1105×30940)2+(3094×30940−1105×37791)2=

=(3094×37791−1105×30940)2+(3094×30940+1105×37791)2

2217=1511140542+539693052 = 827366542+1374874152

31

Если были бы найдены рабочие записи Ферма, то оказалось бы, что его способы решения задач гораздо проще, чем те, которые известны сейчас, т.е. сегодняшняя наука еще не достигла того уровня, который имел место в его утраченных работах. Но как же могло случиться, что эти записи пропали? Вероятными могут быть две версии. Первая – это наличие у Ферма тайника, о котором никто, кроме него не знал. Если это было так, то шансов на то, что он сохранился почти нет. Дом в Тулузе, где жил Ферма со своей семьей не сохранился, иначе там был бы музей. Остаются места работы – это тулузский Капитолий, (перестроен в 1750 г.), и здание в городе Кастр, (не сохранилось), где Ферма руководил собранием судей. Только призрачные шансы есть на то, что хотя бы какие-то стены сохранились с тех времен. Другая версия заключается в том, что бумаги Ферма имелись у его семьи, но по каким-то причинам не сохранились, (см. Приложение III, год 1660, 1663 и 1680).

ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА

Подняться наверх