Читать книгу ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков - Страница 6

3. Что такое число?
3.2. Аксиомы арифметики

Оглавление

3.2.1. Аксиомы счёта

Этот путь впервые был проложен в конце XIX столетия аксиомами Пеано37. Мы внесём в них изменения, исходя из нашего понимания сущности числа.

Аксиома 1. Натуральным является число, сложенное из единиц 38.

Аксиома 2. Единица является исходным натуральным числом.

Аксиома 3. Все натуральные числа образуют бесконечный ряд, в котором каждое следующее число образуется путём прибавления к предыдущему числу единицы.

Аксиома 4. Единица не следует ни за каким натуральным числом.

Аксиома 5. Если какое-либо предложение доказано для единицы, (начало индукции), и если из допущения, что оно верно для натурального числа N, вытекает, что оно верно также для следующего за N натурального числа, (индукционное предположение), то это предложение будет верно для всех натуральных чисел.

Аксиома 6. Кроме натуральных могут существовать и другие производные от них числа, но только в том случае, если они обладают всеми без исключения базовыми свойствами натуральных чисел.

Первая аксиома является прямым следствием определения сущности числа, поэтому у Пеано её просто не могло быть. Теперь эта первая аксиома передаёт смысл определения понятия числа всем остальным аксиомам.

Вторая, четвертая и пятая аксиомы сохраняются, как и у Пеано почти без изменений, но из этой новой системы полностью изъята четвертая аксиома Пеано как избыточная. Вторая аксиома имеет тот же смысл, что и первая в списке Пеано, но уточняется, чтобы стать следствием новой первой аксиомы.

Третья аксиома – это новая редакция второй аксиомы Пеано. Понятие натурального ряда дано здесь проще, чем у Пеано, где нужно догадываться о нём через понятие «следующего» числа.

Четвертая аксиома точно такая же, как и третья аксиома Пеано.

Пятая аксиома такая же, как у Пеано, которая считается главным итогом всей системы. По сути, эта аксиома является формулировкой очень ценного для науки метода индукции, который в данном случае позволяет обосновать и построить систему счёта. Однако счёт присутствует в том или ином виде не только в натуральных, но и в любых других числах, следовательно, необходима ещё одна заключительная аксиома.

Шестая аксиома распространяет базовые свойства натуральных чисел на любые производные от них числа, поскольку если окажется, что какие-либо величины, полученные вычислениями из натуральных чисел, противоречат их базовым свойствам, то эти величины не могут относиться к категории чисел.

Вот теперь арифметика получает все предпосылки для того, чтобы иметь статус самой фундаментальной из всех научных дисциплин. С точки зрения сущности счёта всё становится намного проще и понятнее, чем до сих пор. На основе этой обновлённой системы аксиом нет нужды «создавать» одно за другим натуральные числа, а затем «доказывать» для начальных чисел действия сложения и умножения. Теперь достаточно только дать имена этим начальным числам в рамках общепринятой системы счисления.

Если эта система десятичная, то символы от 0 до 9 должны получить статус начальных чисел, сложенных из единиц, в частности: число «один» обозначается как 1=1, число «два» – как 2=1+1, число «три» – как 3=1+1+1 и т.д. до числа «девять». Числа после 9 и до 99 складываются из десятков и единиц, например, 23=(10+10)+(1+1+1) и получают соответствующие имена: «десять», «одиннадцать», «двенадцать» … «девяносто девять». Числа после 99 складываются из сотен, десятков и единиц и т.д. Таким образом, имена только начальных чисел должны быть заранее сосчитаны из единиц. Все остальные числа именуются так, чтобы их величину можно было сосчитать, используя только начальные числа39.

3.2.2. Аксиомы действий

Все арифметические действия входят составной частью в определение сущности числа. В компактном виде они представляются следующим образом:

1. Сложение: n = (1+1…)+(1+1+1…) = (1+1+1+1+1…)

2. Умножение: a+a+a+…+a=a×b=c

3. Возведение в степень: a×a×a×…×a=ab=c

4. Вычитание: a+b=c → b=c−a

5. Деление: a×b=c → b=c : a

6. Логарифм: ab = c → b=logac

Отсюда можно сформулировать все нужные определения в виде аксиом.

Аксиома 1. Действие сложения нескольких чисел (слагаемых) – это их соединение в одно число (сумму).

Аксиома 2. Все арифметические действия являются либо сложением, либо производными от сложения.

Аксиома 3. Существуют прямые и обратные арифметические действия.

Аксиома 4. Прямые действия – это разновидности сложения. Кроме самого сложения к ним относятся также умножение и возведение в степень.

Аксиома 5. Обратные действия – это вычисление аргументов функций. К ним относятся вычитание, деление и логарифм.

Аксиома 6. Не существуют иные действия с числами, кроме комбинаций из шести арифметических действий 40.

3.2.3. Базовые свойства чисел

Следствием аксиом действий являются следующие базовые свойства чисел, обусловленные необходимостью практических вычислений:

1. Наполнение: a+1>a

2. Нейтральность единицы:      a×1=a:1=a

3. Коммутативность: a+b=b+a; ab=ba

4. Ассоциативность: (a+b)+c=a+(b+c); (ab)c=a(bc)

5. Дистрибутивность: (a+b)c=ac+bc

6. Сопряженность:      a=c → a±b=b±c; ab=bc; a:b=c:b; ab=cb; logba= logbc

Эти свойства известны давным-давно как азы начальной школы и до сих пор они воспринимались как элементарные и очевидные. Отсутствие должного понимания происхождения этих свойств из сущности понятия числа стало причиной разрушения науки как целостной системы знаний, которую нужно теперь отстраивать, начиная с азов и сохраняя при этом всё то ценное, что осталось от настоящей науки. Приведённая выше аксиоматика исходит из определения сущности понятия числа и поэтому представляет собой единое целое. Однако этого недостаточно для того, чтобы оградить науку от другой напасти, т.е. чтобы в процессе развития она не утонула в океане собственных изысканий, или не запуталась в сложных переплетениях большого множества разных идей.

В этом смысле нужно очень чётко понимать, что аксиомы не являются утверждениями, принятыми без доказательств. В отличие от теорем, они есть только констатации и ограничения, синтезированные из опыта вычислений, без которых просто никак нельзя обойтись. Иной смысл в базовых теоремах, близких к аксиомам, но доказуемым. К одной из них относится основная или фундаментальная теорема арифметики. Это настолько важная теорема, что её доказательство должно быть максимально надёжным, иначе последствия могут быть непредсказуемыми.

Рисунок 33. Пирамиды начальных чисел


37

Содержание аксиом Пеано следующее:

(А1) 1 есть натуральное число.

(А2) Для любого натурального числа n имеется натуральное число, обозначаемое n' и называемое числом, следующим за n.

(А3) Если m' = n' для каких-либо натуральных чисел m,n, то m = n.

(А4) Число 1 не следует ни за каким натуральным числом, т.е. n' никогда не равно 1.

(А5) Если число 1 обладает некоторым свойством P, и для любого числа n, обладающего свойством P, следующее за ним число n' также обладает свойством P, то всякое натуральное число обладает свойством P.

38

В «Началах» Евклида есть нечто похожее на эту аксиому:

«1. Единица есть <то>, через что каждое из существующих считается единым. 2. Число же – множество, составленное из единиц», (Книга VII, Определения.).

39

Итак, считалка – это именованные начальные числа в готовом, (сосчитанном), виде, чтобы на их основе стало возможно, используя аналогичный метод, именовать также любые другие числа. Всё это, конечно, совсем не сложно, но почему же этому не учат в школе, а просто заставляют всё заучивать без объяснений? Ответ очень простой – потому что наука просто не знает, что есть число, а признаться в этом никак не может.

40

Аксиомы действий, которые до сих пор отдельно не выделялись, также являются прямым следствием определения сущности понятия числа. Они, как способствуют обучению, так и устанавливают определенную ответственность за обоснованность любых научных изысканий в области чисел. В этом смысле последняя 6-я аксиома выглядит даже слишком категоричной. Но без такого рода ограничений в систему знаний можно протаскивать любую тарабарщину и затем называть это «прорывом в науке».

ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА

Подняться наверх