Читать книгу ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков - Страница 5

3. Что такое число?
3.1. Определение понятия числа

Оглавление

Вопрос о сущности понятия числа во все времена был для учёных некоей вещью в себе. Подспудно они, конечно, понимали, что не могут чётко ответить на этот вопрос, но и признаться в этом они тоже не могут, поскольку это плохо отразилось бы на поддержании престижа науки. В чём тут проблема? Да в том, что число во всех случаях должно получаться из других чисел, иначе оно не сможет восприниматься как число. Чтобы понять, например, число 365, нужно сложить три сотни, шесть десятков и пять единиц. Отсюда, следует, что понятие числа не раскладывается на качественно отличные от него компоненты и таким вот обычным для науки способом, т.е. путем анализа проникнуть в тайну его сущности не удаётся.

Учёные, которые задавались вопросом о сущности числа сразу упирались в эту проблему и приходили к выводу, что общего определения понятия числа просто не существует. Но не таков был Пьер Ферма, который подошёл к этой проблеме с другой стороны. Он задался вопросом: «Откуда вообще появляется понятие числа?», и пришёл к выводу о том, что его предшественниками были понятия «больше», «меньше» и «равно» как результаты сравнений некоторых свойств, присущих разным предметам [30].

Если разные предметы сравниваются по некоторому свойству с одним и тем же предметом, то появляется такое понятие как измерение и тогда может быть через измерение и следует выявлять сущность числа? Однако это не так. По отношению к измерению число первично, т.е. если нет чисел, то не может быть и никаких измерений. Понимание сущности числа становится возможно только после установления того, что число неразрывно связано понятием «функция». А вот это понятие определить совсем не сложно:

Функция – это заданная последовательность действий.

В свою очередь, действия не могут существовать сами по себе, т.е. в состав функции, кроме них должны входить компоненты, с которыми эти действия выполняются. Эти компоненты называются «аргументы функции». Отсюда следует и общее определение понятия числа: Число есть объективная реальность, существующая как счётная величина и состоящая из аргументов функции.

Например, a + b + c = d, где a, b, c – аргументы, d – счётная величина32.

Чтобы понять, какая пропасть отделяет Пьера Ферма от остального учёного мира, достаточно сравнить это простое определение с тем пониманием, которое есть в сегодняшней науке [13, 29]. А вот понимание, явно присутствующее в научном творчестве Ферма, позволило ему ещё в те далёкие времена достигать результатов, которые для других учёных оказывались либо сопряжены с чрезвычайными трудностями, либо вообще недостижимы. Можно дать и более широкое определение понятия числа, а именно:

Число есть разновидность данных, представляемых в виде функций.

Это расширенное определение понятия числа выходит за рамки математики, поэтому его можно назвать общим, а предыдущее определение – математическим. В этом определении нужно ещё разъяснить сущность понятия «данные». Однако для современной науки этот вопрос не менее трудный, чем вопрос о сущности понятия числа33.

Из общего определения понятия числа следует истинность знаменитого утверждения Пифагора о том, что всё сущее может отображаться как число. Действительно, если число – это особая разновидность информации, то вот это очень смелое по тем временам утверждение не только обосновано, но и подтверждено современной практикой его применения на компьютерах, где реализуются три известных способа представления данных: числовой, (или оцифрованный), символьный, (или текстовый), и аналоговый (изображения, звук и видео). Все три способа существуют одновременно.

Рисунок 30. Пифагор


Поразительно смелое даже по нынешним временам утверждение о том, что мышление есть неосознанный процесс вычислений, высказал ещё в XVII веке Готфрид Лейбниц (Gottfried Leibniz). Под мышлением здесь явно понимается процесс обработки данных, которые во всех случаях могут представляться как числа. Тогда понятно, как появляются вычисления, но понимание сути этого процесса у современной науки пока отсутствует 34.

Рисунок 31. Готфрид Лейбниц


У всех данных здесь определений понятия числа есть одна общая основа: Числа существуют объективно в том смысле, что они присутствуют в законах окружающего мира, познавать которые можно только с помощью чисел.

Со школьной скамьи все узнают о числах из детской считалки: раз, два три, четыре, пять и т.д. Откуда взялась эта считалка, один Господь ведает. Впрочем, были и попытки объяснить её происхождение с помощью аксиом. Однако происхождение их самих такое же непонятное, как и считалки. Скорее это похоже на некое подражание «Началам» Евклида, чтобы придать знаниям образ науки и внешнюю видимость солидности и фундаментальности.

Ситуация совсем иная, когда есть математическое определение сущности числа. Тогда для более полного его понимания становятся необходимостью и аксиомы, и считалка. Действительно, данное определение сущности числа включает в себя аргументы, действия и счётную величину. Но аргументы – это тоже числа, и они должны представляться не конкретно каждое из них, а по умолчанию, т.е. в форме общепринятой и неизменной функции, которая называется системой счисления, а она-то никак уже не может появиться без такого понятия как счёт. Вот теперь уже по отношению к счёту, аксиомы оказываются весьма кстати и без них он может появиться разве только от пришельцев. Да, собственно, в действительности это так и было, поскольку такие источники знаний как «Начала» Евклида или «Арифметика» Диофанта созданы явно не нашей, а совсем другой цивилизацией35.

Если аксиомы регламентируют счёт, то они первичны по отношению к нему. Однако нет никакой надобности определять их сущность через введение новых понятий, т.к. смысл любых аксиом как раз в их изначальности т.е. они всегда по сути есть границы знаний. Таким образом, аксиомы получают ещё более основополагающий статус, чем до сих пор, когда они ограничивались лишь обоснованием какой-либо конкретной системы.

В частности, система аксиом, разработанная итальянским математиком Джузеппе Пеано (Giuseppe Peano), очень близко соответствуют решению задачи построения системы счёта, хотя вот это основное их предназначение никак не разъяснялось, видимо, с намёком на обоснование сущности понятия числа. Научное сообщество воспринимало их только как некую «формализацию арифметики», совершенно не замечая, что эти аксиомы ни коим образом не отражают сущность чисел, а только создают основы для их представления по умолчанию, т.е. через счёт.

Рисунок 32. Джузеппе Пеано


Если основное содержание аксиом – это определение границ знаний, относящихся к общепринятым способам представления чисел, то их следует выстраивать как из определения сущности понятия числа, так и с целью обеспечения прочности и устойчивости всего здания науки. До сих пор из-за отсутствия такого понимания способов построения основ знаний вопрос о сущности числа никогда даже и не ставился, а только усложнялся и запутывался. Но теперь, когда он проясняется, причём без каких-либо особенных затруднений, вся наука может получить новый и очень мощный импульс для своего развития. И вот тогда именно на такой прочной основе она приобретает способности с невероятной лёгкостью преодолевать такие сложнейшие преграды, которые в прежние времена, когда понимания сущности числа не было, представлялись науке как совершенно неприступные крепости 36.

32

Для математиков и программистов понятие аргумента функции вполне обычно и уже давно общепринято. В частности, как f(x,y,z) обозначают функцию с переменными аргументами x,y,z. Определение сущности числа через понятие аргументов функции делает его очень простым, понятным и действенным, поскольку всё, что известно о числе, исходит отсюда, а то, что этому определению не соответствует должно подвергаться сомнению. Это не просто необходимая осторожность, но и эффективный способ проверки на прочность всякого рода конструкций, незаметно подменяющих сущность числа на сомнительные нововведения, делающие науку бестолковой и непригодной для обучения.

33

Точного определения понятия «данные» не существует, если не относить к нему описание из толкового словаря. Отсюда следует и неопределённость производных от него понятий, таких как «форматы данных», «обработка данных», «операции с данными» и т.п. Такая неопределённая терминология порождает шаблонное мышление, указывающее на то, что разум не развивается, а тупеет и, достигая в этой мешанине из пустых слов некоторой критической точки, просто перестает соображать. В данной работе это определение понятия «данные» дано в п. 5.3.2, но для этого требуется дать самое общее определение понятия «информация», которое по своей трудности будет ещё и покруче определения понятия числа, поскольку и само число есть информация. Подвижки в этом вопросе настолько значимы, что за ними следует реальный технологический прорыв с таким потенциалом эффективности, который будет несопоставимо выше того, что был обусловлен появлением компьютеров.

34

Вычисления – это не только действия с числами, но и применение методов достижения конечного результата. С действиями справляется даже машина, если разум оснащает её соответствующими методами. Но если разум сам становится подобием машины, т.е. не осознаёт методов вычислений, то он способен создавать только чудовища, которые его же и уничтожат. Именно к этому всё сейчас и идёт из-за полного отсутствия решения проблемы обеспечения безопасности данных. А вся эта проблема в том, что информатика как наука просто не существует.

35

Специалисты, комментирующие древние, по их мнению, «Начала» Евклида и «Арифметику» Диофанта, будто завороженные видят, но никак не могут признать очевидное. Ни Евклид, ни Диофант не могут быть создателями содержания этих книг, это не под силу даже современной науке. Более того, эти книги появились только в эпоху позднего средневековья, когда уже развилась необходимая для этого письменность. Авторы этих книг были всего лишь переводчиками действительно древних источников, принадлежавших другой цивилизации. В наше время людей с такими способностями называют экстрасенсами.

36

Если мы с самого начала не определились с понятием числа и имеем представление о нём только через прототипы, (количество пальцев рук, или дней недели и др.), то рано или поздно мы обнаружим, что вообще ничего о числах не знаем и при вычислениях следуем необъятному множеству способов и правил, полученных эмпирическим путем. Но если же изначально мы имеем точное определение понятия числа, то при любых вычислениях сможем следовать только одному этому определению и вытекающему из него относительно небольшому перечню правил. Если мы сами создаём требуемые числа, то сможем это делать через аргументы функции, представляемые в общепринятой системе счисления. А вот когда нужно вычислить неизвестные числа, соответствующие заданной функции и условиям задачи, то зачастую потребуются особые методы, которые без понимания сущности чисел будут очень затруднительны.

ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА

Подняться наверх