Читать книгу ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков - Страница 9

3. Что такое число?
3.5. Золотая теорема Ферма

Оглавление

Напомним, что в известном нам письме-завещании Ферма, (п. 3.3.1), изложен только частный случай этой теоремы для квадратов. Но и этот упрощённый вариант задачи оказался не по силам не только представителям высшей французской аристократии Баше и Декарту, но даже и королевско-императорскому математику Эйлеру.

Однако другой королевский математик Лагранж, благодаря тождеству, найденному Эйлером, всё же сумел справиться с квадратами и его доказательство только одного этого частного случая ЗТФ тиражируется до сих пор чуть ли не во всех учебниках. Однако не поддаётся никакому разумному объяснению то, что общее доказательство ЗТФ для всех многоугольных чисел, полученное Коши в 1815 г., было просто проигнорировано научным сообществом.

Наше исследование мы начнём с формулировки ЗТФ из письма Ферма к Мерсенну 1636 г. Она представлена там следующим образом:

Всякое <натуральное> число равно

одному, двум или трём треугольникам,

одному, 2, 3 или 4 квадратам,

одному, 2, 3, 4 или 5 пятиугольникам,

одному, 2, 3, 4, 5 или 6 шестиугольникам,

одному, 2, 3, 4, 5, 6 или 7 семиугольникам,

и так до бесконечности [31].

Поскольку многоугольные числа явно не в почёте у сегодняшней науки, мы дадим здесь все необходимые разъяснения. Формула вычисления любого многоугольного числа представляется как mi =i+(k−2)(i−1)i/2 где m – многоугольное число, i – порядковый номер, k – количество углов. Таким образом, m1=1; m2=k; а для всех остальных i значения mi варьируются в широких пределах, как показано в следующей таблице:

Таблица 1. Многоугольные числа


Для вычисления mi достаточно получить по формуле только треугольные числа, что очень легко, поскольку разница между ними с каждым шагом растёт на единицу. А все остальные mi можно вычислять путём прибавления в столбцах предыдущего треугольного числа. Например, в столбце i=2 числа увеличиваются на единицу, в столбце i=3 – на три, в столбце i=4 – на шесть и т.д., т.е. как раз на величину треугольного числа из предыдущего столбца.

Убедиться в том, что любое натуральное число представляется суммой не более чем k k-угольных чисел, довольно легко. Например, треугольное число 10, состоит из одного слагаемого. Далее 11=10+1, 12=6+6, 13=10+1 из двух, 14=10+3+1 из трёх, 15 вновь из одного слагаемого. И так будет происходить регулярно со всеми натуральными числами. Удивительно то, что количество необходимых слагаемых ограничивается именно числом k. Так что же это за чудодейственная сила, которая неизменно даёт такой результат?

Для примера возьмём натуральное число 41. Если в качестве слагаемого будет ближайшее к нему треугольное число 36, то уложиться в три числа не получится никак, поскольку иначе как из 4-х слагаемых, т.е. 41=36+3+1+1 это число не получается. Однако, если мы вместо 36 возьмём другие треугольные числа, например, 41=28+10+3, или 41=21+10+10, то опять каким-то неведомым чудесным образом всё будет так, как утверждает ЗТФ.

На первый взгляд представляется просто невероятным, что можно как-то с этим разобраться? Но мы всё же обратим внимание на существование особых натуральных чисел, которые представляются не менее, чем из k k-угольных чисел и обозначим их как S-числа. Такие числа легко найти, например, для треугольников – это 5, 8, 14, для квадратов – 7, 15, 23, для пятиугольников – 9, 16, 31 и т.д. И вот такое простое наше наблюдение позволяет двигаться к цели напрямую, т.е. не задействуя хитроумные приёмы или мощную «остроту ума».

Теперь, чтобы доказать ЗТФ, предположим обратное, т.е. что существует некое минимальное натуральное число N, представляемое не менее, чем из k+1 k-угольных чисел. Тогда понятно, что это наше предполагаемое число должно находиться между какими-нибудь k-угольными числами mi и mi+1 и может представляться как

N = mi + δ1, где δ1 = N− mi (1)

Вполне очевидно, что δ1 должно быть S-числом, поскольку иначе это будет противоречить нашему предположению о числе N. Далее мы поступаем также, как и в нашей пробе с числом 41, т.е. представляем предполагаемое число как

N = mi-1 + δ2= mi-2 + δ3; где δ2 = N − mi-1; δ3 = N − mi-2 и т.д.

Теперь δ2, δ3 и т.д. также должны быть S-числами. И вот так мы будем двигаться по спуску до самого конца, т.е. до

δi-1 = N − m2 = N − k и δi = N − m1 = N – 1 (2)

Таким образом, в последовательности чисел от δ1 до δi все они должны быть S-числами, в то время как наше предполагаемое число N будет состоять не менее чем из k+1 k-угольных чисел. Из (1) и (2) следует:

N−mi =Si (3)

Следовательно, если отнимать от нашего предполагаемого числа N любое меньшее его многоугольное число mi, то согласно нашему предположению, в результате должно получаться только S-число. Конечно, это условие выглядит просто невероятным и создаётся впечатление, что мы уже у цели, но как же тогда доказать, что это невозможно?

Если бы мы дали здесь ответ на этот вопрос, то эта знаменитая теорема Ферма сразу превратилась бы в самую обычную школьную задачку и интерес к ней был бы утрачен. Чтобы этого не произошло, мы пока остановимся на том, что доказательство изложено здесь только на 90%, а остальные 10% предложим найти тем, кому это будет интересно, чтобы оценить истинное великолепие этого научного достижения Ферма особенно в сравнении с доказательством ЗТФ Коши.42

Рисунок 34. Титульная страница доказательства Коши «Золотой теоремы Ферма»


Рисунок 35. Одна из 43-х страниц доказательства Коши Золотой теоремы Ферма


42

Факсимиле издания с доказательством ЗТФ Коши опубликовано Google под названием MEMIRES DE LA CLASSE DES SCIENCES MATHTÉMATIQUES ET PHYSIQUES DE L’INSTITUT DE France. ANNEES 1813, 1814, 1815: https://books.google.de/books?id=k2pFAAAAcAAJ&pg=PA177#v=onepage&q&f=false. То, что нам нужно находится на стр. 177 под названием DEMONSTRATION DU THÉORÉME GÉNÉRAL DE FERMAT, SUR LES NOMBRES POLYGONES. Par M. A. L. CAUCHY. Lu à l’Académie, le 13 novembre 1815 (см. рис. 34, 35). Общее доказательство Коши занимает 43 (!!!) страницы, и только одно это обстоятельство указывает на то, что ни в один учебник оно не влезает. Аналогичный труд с доказательством ВТФ для n=7 выполнил коллега Коши по Академии наук Габриэль Ламе. Подобные творения не то, что студентам, но и академикам не по силам, т.к. первые ничего не могут в них понять, а вторые просто не располагают для этого необходимым временем. Тогда выходит, что такие доказательства вряд ли возможно проверить, насколько они убедительны, т.е. являются ли вообще доказательствами. А вот если бы Коши в своём доказательстве применил рекомендованный Ферма метод спуска, то доказательство стало бы настолько убедительным, что никаких проверок просто не потребовалось бы.

ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА

Подняться наверх