Читать книгу Fallout - Fred Pearce - Страница 6
Zu den verwendeten Maßeinheiten
ОглавлениеDie Maßeinheiten der Atomwissenschaft sind ein wahrer Albtraum; als hätte man sich untereinander verschworen, mit Becquerel (und auch Kilo-, Mega-, Giga-, Tera- und sogar Petabecquerel), Rem, Rad, Sievert, Curie, Röntgen, Gray und Coulomb alles möglichst kompliziert zu machen. Was bezeichnen all diese Einheiten überhaupt?
Letztlich werden meistens nur zwei Dinge gemessen: erstens die Menge an Radioaktivität, die bei einem Unfall frei geworden ist oder auch von einer bestimmten Boden-, Wasser- oder Luftmenge ausgeht. Und zweitens die Strahlendosis, die von einem lebenden Organismus wie Ihnen aufgenommen wird. Im zweiten Fall wird es häufig kompliziert, weil uns die verschiedenen Strahlungsarten radioaktiver Stoffe (Alpha-, Beta- oder Gammastrahlung) auf unterschiedliche Weise erreichen. Wir können eine Dosis durch äußere Strahlenexposition erhalten, wenn wir uns in einer radioaktiv belasteten Umgebung bewegen, oder durch innere Strahlenexposition, wenn wir radioaktives Material eingeatmet oder mit der Nahrung aufgenommen haben.
Wenn ich im Folgenden etwa den Unterschied zwischen dem Maß für »absorbierte Strahlendosen« und »Strahlenexposition« ignoriere, werden einige Puristen vermutlich nervös. Aber ich habe beschlossen, alles so einfach wie möglich zu halten. Ich habe mich auf eine Maßeinheit für Radioaktivität und auf eine andere für eine bestimmte erhaltene Strahlendosis festgelegt und lasse den ganzen statistischen Hokuspokus einfach bleiben.
Im Fall der frei gewordenen Radioaktivität habe ich mich für Curie entschieden. Das ist eine alte, aber noch immer verbreitete Maßeinheit. Manche Wissenschaftler ziehen Becquerel vor. Ein Becquerel ist jedoch so winzig, dass wir dabei schnell ins Reich der Giga-, Tera- und Peta-Größen geraten. Das finde ich furchtbar. Es ist, als würde man die Strecke einer Autofahrt in Zentimetern angeben. Ein Curie entspricht sagenhaften 73 Milliarden Becquerel. In den meisten Fällen ist die Einheit Curie pragmatischer; daher also Curie. In ganz seltenen Fällen, wenn es um winzige Konzentrationen geht, habe ich auf Picocurie zurückgegriffen – also den billionsten Teil eines Curie.
Bei Strahlendosen habe ich mich für die moderne Maßeinheit der – wie Radiologen sagen – »effektiven Dosis« entschieden, die entsprechend gewichtet ist, um den unterschiedlichen Schäden, die unterschiedliche Strahlungsarten verursachen, Rechnung zu tragen. Diese Einheit heißt »Sievert«. Ein Sievert ist schon eine größere Sache. Bereits eine Strahlendosis von vier Sievert wird Sie wahrscheinlich das Leben kosten. Die Einheit »Millisievert«, also ein Tausendstel Sievert, eignet sich für unsere Zwecke gut. Daher verwende ich sie im ganzen Buch. Geigerzähler messen die Strahlendosis meistens in Mikrosievert pro Stunde. In der Regel habe ich die Werte, wenn es für die Aussage keine Rolle spielt, in Millisievert pro Jahr umgerechnet.
Als Daumenregel gilt also, dass eine Strahlendosis von 4.000 Millisievert in der Regel tödlich ist. Von 1.000 Millisievert bekommt man wahrscheinlich Verbrennungen und eine Reihe anderer potenziell tödlich wirkender Symptome, die zusammengefasst als akute Strahlenkrankheit bezeichnet werden. 100 Millisievert hingegen ist die geringste Dosis, bei der es ernst zu nehmende Anhaltspunkte für Auswirkungen auf die menschliche Gesundheit gibt, etwa eine erhöhte Krebsrate innerhalb der Bevölkerung. Zum Vergleich: Auf rund zwei bis drei Millisievert beläuft sich die typische Jahresdosis durch natürliche Strahlenquellen; ähnlich hoch ist auch die Dosis bei einer Mammografie. Ein Millisievert pro Jahr gilt als maximale vertretbare Strahlendosis durch Kraftwerke und andere nicht-medizinische Strahlenquellen für die allgemeine Bevölkerung.
Außerdem habe ich alle Währungs-Angaben in US-Dollar umgerechnet. Zum Zeitpunkt der Umrechnung war ein Euro 1,15 Dollar und ein Pfund 1,30 Dollar wert. Die ursprünglichen Summen gehen häufig aus den im Anhang aufgeführten Quellen hervor.