Читать книгу The Peripheral T-Cell Lymphomas - Группа авторов - Страница 90

References

Оглавление

1 1 Swerdlow, S., Campo, E., Harris, N. et al. (2017). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4e. Lyon: IARC Press.

2 2 Crotty, S. (2014). T follicular helper cell differentiation, function, and roles in disease. Immunity 41 (4): 529–542.

3 3 Yu, D., Tan, A.H., Hu, X. et al. (2007). Roquin represses autoimmunity by limiting inducible T‐cell co‐stimulator messenger RNA. Nature 450 (7167): 299–303.

4 4 Ellyard, J.I., Chia, T., Rodriguez‐Pinilla, S.M. et al. (2012). Heterozygosity for Roquinsan leads to angioimmunoblastic T‐cell lymphoma‐like tumors in mice. Blood 120 (4): 812–821.

5 5 Auguste, T., Travert, M., Tarte, K. et al. (2013). ROQUIN/RC3H1 alterations are not found in angioimmunoblastic T‐cell lymphoma. PLoS One 8 (6): e64536.

6 6 Sakata‐Yanagimoto, M., Enami, T., Yoshida, K. et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.

7 7 Dobay, M.P., Lemonnier, F., Missiaglia, E. et al. (2017). Integrative clinicopathological and molecular analyses of angioimmunoblastic T‐cell lymphoma and other nodal lymphomas of follicular helper T‐cell origin. Haematologica 102 (4): e148–e151.

8 8 Palomero, T., Couronne, L., Khiabanian, H. et al. (2014). Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46 (2): 166–170.

9 9 Yoo, H.Y., Sung, M.K., Lee, S.H. et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46 (4): 371–375.

10 10 Muto, H., Sakata‐Yanagimoto, M., Nagae, G. et al. (2014). Reduced TET2 function leads to T‐cell lymphoma with follicular helper T‐cell‐like features in mice. Blood Cancer J 4: e264.

11 11 Lai, A.Y., Fatemi, M., Dhasarathy, A. et al. (2010). DNA methylation prevents CTCF‐mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med 207 (9): 1939–1950.

12 12 Nishizawa, S., Sakata‐Yanagimoto, M., Hattori, K. et al. (2017). BCL6 locus is hypermethylated in angioimmunoblastic T‐cell lymphoma. Int J Hematol 105 (4): 465–469.

13 13 Zang, S., Li, J., Yang, H. et al. (2017). Mutations in 5‐methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin Invest 127 (8): 2998–3012.

14 14 Cortes, J.R., Ambesi‐Impiombato, A., Couronné, L. et al. (2018). RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell 33 (2): 259–273.e7.

15 15 Ng, S.Y., Brown, L., Stevenson, K. et al. (2018). RhoA G17V is sufficient to induce autoimmunity and promotes T‐cell lymphomagenesis in mice. Blood 132 (9): 935–947.

16 16 Nguyen, T.B., Sakata‐Yanagimoto, M., Fujisawa, M. et al. (2020). Dasatinib is an effective treatment for angioimmunoblastic T‐cell lymphoma. Cancer Res 80 (9): 1875–1884.

17 17 Fujisawa, M., Sakata‐Yanagimoto, M., Nishizawa, S. et al. (2018). Activation of RHOA‐VAV1 signaling in angioimmunoblastic T‐cell lymphoma. Leukemia 32 (3): 694–702.

18 18 Sato, F., Ishida, T., Ito, A. et al. (2013). Angioimmunoblastic T‐cell lymphoma mice model. Leuk Res 37 (1): 21–27.

19 19 Morris, S.W., Kirstein, M.N., Valentine, M.B. et al. (1995). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non‐Hodgkin's lymphoma. Science 267 (5196): 316–317.

20 20 Kuefer, M.U., Look, A.T., Pulford, K. et al. (1997). Retrovirus‐mediated gene transfer of NPM‐ALK causes lymphoid malignancy in mice. Blood 90 (8): 2901–2910.

21 21 Miething, C., Grundler, R., Fend, F. et al. (2003). The oncogenic fusion protein nucleophosmin–anaplastic lymphoma kinase (NPM–ALK) induces two distinct malignant phenotypes in a murine retroviral transplantation model. Oncogene 22 (30): 4642–4647.

22 22 Miething, C., Grundler, R., Mugler, C. et al. (2004). A new method of retroviral lineage specific expression utilizing the Cre/lox system induces a T‐lymphoid malignancy in a mouse model of ALCL. Blood 104 (11): 348.

23 23 Chiarle, R., Gong, J.Z., Guasparri, I. et al. (2003). NPM‐ALK transgenic mice spontaneously develop T‐cell lymphomas and plasma cell tumors. Blood 101 (5): 1919–1927.

24 24 Chiarle, R., Simmons, W.J., Cai, H. et al. (2005). Stat3 is required for ALK‐mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11 (6): 623–629.

25 25 Turner, S.D., Tooze, R., Maclennan, K., and Alexander, D.R. (2003). Vav‐promoter regulated oncogenic fusion protein NPM‐ALK in transgenic mice causes B‐cell lymphomas with hyperactive Jun kinase. Oncogene 22 (49): 7750–7761.

26 26 Turner, S.D., Merz, H., Yeung, D., and Alexander, D.R. (2006). CD2 promoter regulated nucleophosmin‐anaplastic lymphoma kinase in transgenic mice causes B lymphoid malignancy. Anticancer Res 26 (5A): 3275–3279.

27 27 Rajan, S.S., Li, L., Kweh, M.F. et al. (2019). CRISPR genome editing of murine hematopoietic stem cells to create Npm1‐Alk causes ALK+ lymphoma after transplantation. Blood Adv 3 (12): 1788–1794.

28 28 Pfeifer, W., Levi, E., Petrogiannis‐Haliotis, T. et al. (1999). A murine xenograft model for human CD30+ anaplastic large cell lymphoma. Successful growth inhibition with an anti‐CD30 antibody (HeFi‐1). Am J Pathol 155 (4): 1353–1359.

29 29 Bangham, C.R.M. (2018). Human T cell leukemia virus type 1: persistence and pathogenesis. Annu Rev Immunol 36 (1): 43–71.

30 30 Nerenberg, M., Hinrichs, S.H., Reynolds, R.K. et al. (1987). The tat gene of human T‐lymphotropic virus type 1 induces mesenchymal tumors in transgenic mice. Science 237 (4820): 1324–1329.

31 31 Habu, K., Nakayama‐Yamada, J., Asano, M. et al. (1999). The human T cell leukemia virus type I‐tax gene is responsible for the development of both inflammatory polyarthropathy resembling rheumatoid arthritis and noninflammatory ankylotic arthropathy in transgenic mice. J Immunol 162 (5): 2956–2963.

32 32 Ruddle, N.H., Li, C.B., Horne, W.C. et al. (1993). Mice transgenic for HTLV‐I LTR‐tax exhibit tax expression in bone, skeletal alterations. and high bone turnover. Virology 197 (1): 196–204.

33 33 Hall, A.P., Irvine, J., Blyth, K. et al. (1998). Tumours derived from HTLV‐I tax transgenic mice are characterized by enhanced levels of apoptosis and oncogene expression. J Pathol 186 (2): 209–214.

34 34 Hasegawa, H., Sawa, H., Lewis, M.J. et al. (2006). Thymus‐derived leukemia‐lymphoma in mice transgenic for the tax gene of human T‐lymphotropic virus type I. Nat Med 12 (4): 466–472.

35 35 Grossman, W.J., Kimata, J.T., Wong, F.H. et al. (1995). Development of leukemia in mice transgenic for the tax gene of human T‐cell leukemia virus type I. Proc Natl Acad Sci U S A 92 (4): 1057–1061.

36 36 Gao, L., Deng, H., Zhao, H. et al. (2005). HTLV‐1 tax transgenic mice develop spontaneous osteolytic bone metastases prevented by osteoclast inhibition. Blood 106 (13): 4294–4302.

37 37 Satou, Y., Yasunaga, J.I., Zhao, T. et al. (2011). HTLV‐1 bZIP factor induces T‐cell lymphoma and systemic inflammation in vivo. PLoS Pathog 7 (2): e1001274.

38 38 Esser, A.K., Rauch, D.A., Xiang, J. et al. (2017). HTLV‐1 viral oncogene HBZ induces osteolytic bone disease in transgenic mice. Oncotarget 8 (41): 69250–69263.

39 39 Zhao, T., Satou, Y., and Matsuoka, M. (2014). Development of T cell lymphoma in HTLV‐1 bZIP factor and tax double transgenic mice. Arch Virol 159 (7): 1849–1856.

40 40 Kawano, N., Ishikawa, F., Shimoda, K. et al. (2005). Efficient engraftment of primary adult T‐cell leukemia cells in newborn NOD/SCID/beta2‐microglobulin(null) mice. Leukemia 19 (8): 1384–1390.

41 41 Mishra, A., La Perle, K., Kwiatkowski, S. et al. (2016). Mechanism, consequences, and therapeutic targeting of abnormal IL15 signaling in cutaneous T‐cell lymphoma. Cancer Discov 6 (9): 986–1005.

42 42 Fehniger, T.A., Suzuki, K., Ponnappan, A. et al. (2001). Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 193 (2): 219–231.

43 43 McGirt, L.Y., Jia, P., Baerenwald, D.A. et al. (2015). Whole‐genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 126 (4): 508–519.

44 44 Cornejo, M.G., Kharas, M.G., Werneck, M.B. et al. (2009). Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models. Blood 113 (12): 2746–2754.

45 45 Rivera‐Munoz, P., Laurent, A.P., Siret, A. et al. (2018). Partial trisomy 21 contributes to T‐cell malignancies induced by JAK3‐activating mutations in murine models. Blood Adv 2 (13): 1616–1627.

46 46 Roberti, A., Dobay, M.P., Bisig, B. et al. (2016). Type II enteropathy‐associated T‐cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun 7 (1): 12602–12613.

47 47 Moffitt, A.B., Ondrejka, S.L., McKinney, M. et al. (2017). Enteropathy‐associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med 214 (5): 1371–1386.

The Peripheral T-Cell Lymphomas

Подняться наверх