Читать книгу Biosurfactants for a Sustainable Future - Группа авторов - Страница 53
3.6.3 Fruit and Vegetable Industry Byproducts for Biosurfactant Processing
ОглавлениеThe commercial manufacturing units use vegetable and fruit items (cassava, apple, banana juice and peels, pineapple, mango, carrot, and lime) for the production of various consumer products, but also in this process enormous quantities of residual waste is produced that is rich in carbon content and can be used to produce biosurfactants [112, 113]. The production of cashew nut generates a massive amount of cashew apples as waste, with only 12% being used as a fruit or for commercial processing, whereas more than 70% of cashew apples remain as waste in the soil and cause pollution [114]. Rocha et al. [115] reported that the cashew apple is an invaluable raw material for varied practical applications due to its abundant carbohydrate, vitamin, and mineral content. They evaluated the A. calcoaceticus strain RAG‐1's ability to produce emulsions by utilizing cashew apple juice, which lowered the kerosene surface tension by ~17 and 59% of EI value. They also assessed the potential of ATCC‐10145 strain of P. aeruginosa in the nutrient media enriched with cashew apple juice as having 90–97 g/l of carbohydrate for rhamnolipid production. The maximum surface tension reduction was 29.5 mN/m, whereas the maximum rhamnolipid synthesis was 3.8 g/l, which was obtained by adding peptone (5 g/l) to cashew apple juice. During the research, they analyzed the surfactin synthesis using B. subtilis LAMI008 in nutrient media supplemented with 86.1 g/l carbon content with cashew apple juice.
Subsequently, a related study was conducted by Giro et al. [116] using B. subtilis LAMI005, where they reported that after 48 hours of fermentation, the highest amount of surfactin was 123 mg/l with clarified cashew apple juice. The production levels were, however, two times smaller than those of mineral media enriched with glucose 10 g/l and fructose 8.7 g/l. The CMC value of biosurfactant from cashew apple juice was 2.5 times lower than that of the CMC value of biosurfactant derived from glucose and fructose media, indicating an increase in efficiency of biosurfactant. These results suggest that cashew apple juice can be used as an appropriate substrate for the production of biosurfactants using B. subtilis LAMI005 and may be used as a rich source of carbon for large‐scale industrial production.