Читать книгу Transfusion Medicine - Jeffrey McCullough - Страница 162

References

Оглавление

1 1. Jobes DR, Sesok‐Pizzini D, Friedman D. Reduced transfusion requirement with use of fresh whole blood in pediatric cardiac surgical procedures. Ann Thorac Surg 2015; 99(5):1706–1711.

2 2. Manno CS, Hedberg KW, Kim HC, et al. Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood 1991; 77(5):930–936.

3 3. Mou SS, Giroir BP, Molitor‐Kirsch EA, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med 2004; 351(16):1635–1644.

4 4. Spinella PC, Perkins JG, Grathwohl KW, et al. Warm fresh whole blood is independently associated with improved survival for patients with combat‐related traumatic injuries. J Trauma Inj Infect Crit Care 2009; 66(Suppl):S69–S76.

5 5. Shackelford SA, del Junco DJ, Powell‐Dunford N, et al. Association of prehospital blood product transfusion during medical evacuation of combat casualties in Afghanistan with acute and 30‐day survival. JAMA 2017; 318(16):1581.

6 6. Guyette FX, Sperry JL, Peitzman AB, et al. Prehospital blood product and crystalloid resuscitation in the severely injured patient. Ann Surg 2019. Available from: http://dx.doi.org/10.1097/SLA.0000000000003324.

7 7. Seheult JN, Anto V, Alarcon LH, et al. Clinical outcomes among low‐titer group O whole blood recipients compared to recipients of conventional components in civilian trauma resuscitation. Transfusion 2018; 58(8):1838–1845.

8 8. Cotton BA, Podbielski J, Camp E, et al. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg 2013; 258(4):527–533.

9 9. Sperry J. Pragmatic prehospital group O whole blood early resuscitation trial (PPOWER). NCT03477006. Available from: https://clinicaltrials.gov/ct2/show/NCT03477006 [cited 28 October 2019].

10 10. Spinella PC, Pidcoke HF, Strandenes G, et al. Whole blood for hemostatic resuscitation of major bleeding. Transfusion 2016; 56:S190–S202.

11 11. Spinella PC, Cap AP. Whole blood. Curr Opin Hematol 2016; 23(6):536–542.

12 12. Strandenes G, Berséus O, Cap AP, et al. Low titer group O whole blood in emergency situations. Shock 2014; 41:70–75.

13 13. Becker GA, Tuccelli M, Kunicki T, et al. Studies of platelet concentrates stored at 22 C and 4 C. Transfusion 1973; 13(2):61–68.

14 14. Rous P. The preservation of living red blood cells in vitro: I. Methods of preservation. J Exp Med 1916; 23(2):219–237.

15 15. Loutit JF, Mollison PL. Disodium‐citrate–glucose mixture as a blood preservative. BMJ 1943; 2(4327):744–745.

16 16. Simon E. Red cell preservation: further studies with adenine. Blood 1962; 20:485–491.

17 17. Benesh R, Benesh R. The influence of organic phosphates on the oxygenation of hemoglobin. Fed Proc 1967; 121:96–102.

18 18. Chanutin A, Curnish RR. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys 1967; 121(1):96–102.

19 19. Benesch R, Benesch RE. Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature 1969; 221(5181):618–622.

20 20. Högman CF, Hedlund K, Zetterström H. Clinical usefulness of red cells preserved in protein‐poor mediums. N Engl J Med 1978; 299(25):1377–1382.

21 21. Högman CF. Additive system approach in blood transfusion: birth of the SAG and Sagman systems. Vox Sang 1986; 51(4):339–340.

22 22. Moroff G, Holme S, Keegan T, Heaton A. Storage of ADSOL‐preserved red cells at 2.5 and 5.5°C: comparable retention of in vitro properties. Vox Sang 1990; 59(3):136–139.

23 23. Simon T, Marcus C, Myhre B, Nelson E. Effects of AS‐3 nutrient‐additive solution on 42 and 49 days of storage of red cells. Transfusion 1987; 27(2):178–182.

24 24. American Association of Blood Banks; Standards Program Committee. Standards for Blood Banks and Transfusion Services, 31st edn. Bethesda, MD: American Association of Blood Banks, 2018.

25 25. Kleinman S, Busch MP, Murphy EL, et al. The National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study (REDS‐III): a research program striving to improve blood donor and transfusion recipient outcomes. Transfusion 2014; 54(3 pt 2):942–955.

26 26. Karafin MS, Bruhn R, Westlake M, et al. Demographic and epidemiologic characterization of transfusion recipients from four US regions: evidence from the REDS‐III recipient database. Transfusion 2017; 57(12):2903–2913.

27 27. Kanias T, Stone M, Page GP, et al. Frequent blood donations alter susceptibility of red blood cells to storage‐ and stress‐induced hemolysis. Transfusion 2019; 59(1):67–78.

28 28. Kanias T, Lanteri MC, Page GP, et al. Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS‐III RBC‐Omics study. Blood Adv 2017; 1(15):1132–1141.

29 29. Page G, Kanias T, Lanteri MC. GWAS of osmotic hemolysis in 12,352 healthy blood donors identifies red cell genetic variants associated with steady state hemolysis in patients with sickle cell disease. Blood 2017; 130(Suppl 1):1117.

30 30. Brunskill S, Thomas S, Whitmore E, et al. What is the maximum time that a unit of red blood cells can be safely left out of controlled temperature storage? Transfus Med Rev 2012; 26(3):209–223.e3.

31 31. Fung MK, Eder A, Spitalnik SL, Westhoff CM, eds. Technical Manual, 19th edn. Bethesda, MD: American Association of Blood Banks, 2017.

32 32. Valeri CR, Ragno G, Pivacek LE, et al. An experiment with glycerol‐frozen red blood cells stored at −80°C for up to 37 years. Vox Sang 2000; 79(3):168–174.

33 33. Valeri CR, Srey R, Tilahun D, Ragno G. The in vitro quality of red blood cells frozen with 40 percent (wt/vol) glycerol at −80°C for 14 years, deglycerolized with the Haemonetics ACP 215, and stored at 4°C in additive solution‐1 or additive solution‐3 for up to 3 weeks. Transfusion 2004; 44:990–995.

34 34. Lecak J, Scott K, Young C, et al. Evaluation of red blood cells stored at −80°C in excess of 10 years. Transfusion 2004; 44(9):1306–1313.

35 35. Bandarenko N, Hay SN, Holmberg J, et al. Extended storage of AS‐1 and AS‐3 leukoreduced red blood cells for 15 days after deglycerolization and resuspension in AS‐3 using an automated closed system. Transfusion 2004; 44(11):1656–1662.

36 36. Smith A. Prevention of hemolysis during freezing and thawing of red blood cells. Lancet 1950; 2:910.

37 37. Sloviter H. Recovery of human red blood‐cells after freezing. Lancet 1951; 1:823–824.

38 38. Chaplin H, Mollison P. Improved storage of red cells at 22°C. Lancet 1953; 1:215–218.

39 39. Tullis JL. Studies on the in vivo survival of glycerolized and frozen human red blood cells. J Am Med Assoc 1958; 168(4):399.

40 40. Merymann H. The cryopreservative of blood cells for clinical use. In: Brown E, ed. Progress in Hematology, vol. 11. New York: Grune & Stratton; 1979, pp. 193–227.

41 41. Valeri C. Frozen blood. N Engl J Med 1966; 275:365–431.

42 42. Rowe AW, Eyster E, Kellner A. Liquid nitrogen preservation of red blood cells for transfusion. Cryobiology 1968; 5(2):119–128.

43 43. Latham A, Steimen L. Development of an expendable liner and automated solution system for red cell glycerolization. Vox Sang 1962; 7:102–103.

44 44. Meryman HT, Hornblower M. A method for freezing and washing red blood cells using a high glycerol concentration. Transfusion 1972; 12(3):145–156.

45 45. Valeri CR. Simplification of the methods for adding and removing glycerol during freeze‐preservation of human red blood cells with the high or low glycerol methods: biochemical modification prior to freezing. Transfusion 2003; 15(3):195–218.

46 46. Henkelman S, Noorman F, Badloe JF, Lagerberg JWM. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang 2015; 108(2):103–112.

47 47. Valeri CR, Zaroulis CG. Rejuvenation and freezing of outdated stored human red cells. N Engl J Med 1972; 287(26):1307–1313.

48 48. Buchholz D, Charette J, Bove J. Preparation of leukocyte‐poor red blood cells using the IBM 2991 blood cell processor. Transfusion 1978; 18(6):653–662.

49 49. Tenczar FJ. Comparison of inverted centrifugation, saline washing, and dextran sedimentation in the preparation of leukocyte‐poor red cells. Transfusion 1973; 13(4):183–188.

50 50. Polesky HF, McCullough J, Helgeson MA, Nelson C. Evaluation of methods for the preparation of HL‐A antigen‐poor blood. Transfusion 1973; 13(6):383–387.

51 51. Greenwalt TJ, Gajewski M, McKenna JL. A new method for preparing buffy coat‐poor blood. Transfusion 1962; 2(4):221–229.

52 52. Blajchman MA. Transfusion‐associated immunomodulation and universal white cell reduction: are we putting the cart before the horse? Transfusion 1999; 39(7):665–670.

53 53. Kao K, Mickel M, Braine H, et al. White cell reduction in platelet concentrates and packed red cells by filtration: a multicenter clinical trial. The Trap Study Group. Transfusion 1995; 35(1):13–19.

54 54. Bordin JO, Heddle NM, Blajchman MA. Biologic effects of leukocytes present in transfused cellular blood products. Blood 1994; 84:1703–1721.

55 55. Freedman JJ, Blajchman MA, McCombie N. Canadian Red Cross Society Symposium on Leukodepletion: Report of Proceedings. Transfus Med Rev 1994; 8(1):1–14.

56 56. Ching EP, Poon M‐C, Neurath D, Ruether BA. Red blood cell alloimmunization complicating plasma transfusion. Am J Clin Pathol 1991; 96(2):201–202.

57 57. Churchill WH, Schmidt B, Lindsey J, et al. Thawing fresh frozen plasma in a microwave oven: a comparison with thawing in a 37 °C waterbath. Am J Clin Pathol 1992; 97(2):227–232.

58 58. Thompson KS, O’Kell RT. Comparison of fresh‐frozen plasmas thawed in a microwave oven and in a 37°C water bath. Am J Clin Pathol 1981; 75(6):851–853.

59 59. Scott E, Puca K, Heraly J, et al. Evaluation and comparison of coagulation factor activity in fresh‐frozen plasma and 24‐hour plasma at thaw and after 120 hours of 1 to 6°C storage. Transfusion 2009; 49(8):1584–1591.

60 60. Allen CJ, Shariatmadar S, Meizoso JP, et al. Liquid plasma use during “super” massive transfusion protocol. J Surg Res 2015; 199(2):622–628.

61 61. Callum JL, Karkouti K, Lin Y. Cryoprecipitate: the current state of knowledge. Transfus Med Rev 2009; 23(3):177–188.

62 62. Pool JG, Shannon AE. Production of high‐potency concentrates of antihemophilic globulin in a closed‐bag system. N Engl J Med 1965; 273(27):1443–1447.

63 63. Ness PM. Cryoprecipitate as a reliable source of fibrinogen replacement. JAMA J Am Med Assoc 1979; 241(16):1690.

64 64. Gunson HH. Variables involved in cryoprecipitate production and their effect on factor VIII activity. Br J Haematol 1979; 43(2):287–295.

65 65. Yazer MH, Stapor D, Triulzi DJ. Use of the RQI test for bacterial screening of whole blood platelets. Am J Clin Pathol 2010; 133(4):564–568.

66 66. Sawant RB, Marathe AN. Pooled platelet product using the Acrodose plus system: evaluation of feasibility, safety and efficacy. Transfus Apher Sci 2013; 49(3):535–538.

67 67. Tobian AAR, Fuller AK, Uglik K, et al. The impact of platelet additive solution apheresis platelets on allergic transfusion reactions and corrected count increment (CME). Transfusion. 2014; 54(6):1523–1529.

68 68. Kacker S, Ness PM, Savage WJ, et al. The cost‐effectiveness of platelet additive solution to prevent allergic transfusion reactions. Transfusion 2013; 53(11):2609–2618.

69 69. Alhumaidan H, Sweeney J. Current status of additive solutions for platelets. J Clin Apher 2012; 27(2):93–98.

70 70. Murphy S, Heaton W, Rebulla P. Platelet production in the Old World—and the New. Transfusion 1996; 36(8):751–754.

71 71. Schrezenmeier H, Seifried E. Buffy‐coat‐derived pooled platelet concentrates and apheresis platelet concentrates: which product type should be preferred? Vox Sang 2010; 99(1):1–15.

72 72. Slichter SJ, Harker LA. Preparation and storage of platelet concentrates: II. Storage variables influencing platelet viability and function. Br J Haematol 1976; 34(3):403–419.

73 73. Mourad N. Studies on release of certain enzymes from human platelets. Transfusion 1968; 8(6):363–367.

74 74. Murphy S. Platelets from pooled buffy coats: an update. Transfusion 2005; 45(4):634–639.

75 75. Fijnheer R, Pietersz RNI, De Korte D, et al. Platelet activation during preparation of platelet concentrates: a comparison of the platelet‐rich plasma and the buffy coat methods. Transfusion 1990; 30(7):634–638.

76 76. Eriksson L, Hogman C. Platelet concentrates in an additive solution prepared from pooled buffy coats. I. In vitro studies. Vox Sang 1990; 59:140–145.

77 77. Murphy S, Gardner FH. Effect of storage temperature on maintenance of platelet viability—deleterious effect of refrigerated storage. N Engl J Med 1969; 280(20):1094–1098.

78 78. Murphy S, Sayar SN, Gardner FH. Storage of platelet concentrates at 22 degrees C. Blood 1970; 35:549–557.

79 79. Handin RI, Valeri CR. Hemostatic effectiveness of platelets stored at 22°C. N Engl J Med 1971; 285(10):538–543.

80 80. Filip DJ, Aster RH. Relative hemostatic effectiveness of human platelets stored at 4° and 22°C. J Lab Clin Med 1978; 91:618–624.

81 81. Kunicki TJ, Tuccelli M, Becker GA, Aster RH. A study of variables affecting the quality of platelets stored at “room temperature.” Transfusion 2003; 15(5):414–421.

82 82. Scott E, Slichter S. Viability and function of platelet concentrates stored in CPD‐adenine (CPDA‐1). Transfusion 1980; 20(5):489–497.

83 83. Holme S, Vaidja K, Murphy S. Platelet storage at 22°C: effect of type of agitation on morphology, viability, and function in vitro. Blood 1978; 34:403–419.

84 84. Vassallo RR, Wagner SJ, Einarson M, et al. Maintenance of in vitro properties of leukoreduced whole blood‐derived pooled platelets after a 24‐hour interruption of agitation. Transfusion 2009; 49(10):2131–2135.

85 85. Murphy S, Kahn RA, Holme S, et al. Improved storage of platelets for transfusion in a new container. Blood 1982; 60:194–200.

86 86. Simon T, Nelson E, Murphy S. Extension of platelet concentrate storage to 7 days in second‐generation bags. Transfusion 1987; 27(1):6–9.

87 87. Heal J, Singal S, Sardisco E, Mayer T. Bacterial proliferation in platelet concentrates. Transfusion 1986; 26(4):388–390.

88 88. Braine H, Kickler T, Charache P, et al. Bacterial sepsis secondary to platelet transfusion: an adverse effect of extended storage at room temperature. Transfusion 1986; 26(4):391–393.

89 89. U.S. Deparment of Health and Human Services. Biologics guidances. 2019. Available from: https://ww.fda.gov/regulatory‐information/search‐fda‐guidance‐documents/bacterial‐risk‐control‐strategies‐blood‐collection‐establishments‐and‐transfusion‐services‐enh.

90 90. Simon T, Sierra E. Concentration of platelet units into small volumes. Transfusion 1984; 24(2):173–175.

91 91. Moroff G, Friedman A, Robkin‐Kline L, et al. Reduction of the volume of stored platelet concentrates for use in neonatal patients. Transfusion 1984; 24(2):144–146.

92 92. Strauss RG. Current issues in neonatal transfusions. Vox Sang 1986; 51(1):1–9.

93 93. Eastlund T. Monetary blood donation incentives and the risk of transfusion‐ transmitted infection. Transfusion 1998; 38(9):874–882.

94 94. Walsh JH. Posttransfusion hepatitis after open‐heart operations. JAMA 1970; 211(2):261.

95 95. Prince A. Sterilisation of hepatitis and HTLV‐III viruses by exposure to tri(n‐butyl)phosphate and sodium cholate. Lancet 1986; 327(8483):706–710.

96 96. Dichtelmuller H, Biesert L, Fabrizzi R. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics association member companies. Transfusion 2009; 49:1931–1943.

97 97. Foster PR, Welch AG, McLean C, et al. Studies on the removal of abnormal prion protein by processes used in the manufacture of human plasma products. Vox Sang 2000; 78(2):86–95.

98 98. Brown P, Cervenáková L, McShane LM, et al. Further studies of blood infectivity in an experimental model of transmissible spongiform encephalopathy, with an explanation of why blood components do not transmit Creutzfeldt‐Jakob disease in humans. Transfusion 1999; 39(11–12):1169–1178.

99 99. Kasper C, Lusher J. Recent evolution of clotting factor concentrates for hemophilia A and B. Transfusion Practices Committee. Transfusion 1993; 33(5):422–434.

100 100. Aronson D. The development of the technology and capacity for the production of factor VIII for the treatment of hemophilia A. Transfusion 1990; 30(8):748–758.

101 101. Azzi A, Ciappi S, Zakvrzewska K, et al. Human parvovirus B19 infection in hemophiliacs first infused with two high‐purity, virally attenuated factor Vlll concentrates. Am J Hematol 1992; 39(3):228–230.

102 102. An outbreak of hepatitis A related to a solvent/detergent treated factor VIII concentrate (Alphanate). MMWR 1996; 45:29–32.

103 103. Lusher JM, Arkin S, Abilgaard CF, Schwartz RS. Recombinant Factor VIII for the treatment of previously untreated patients with hemophilia A. Surv Anesthesiol 1993; 37(5):307.

104 104. Bray G, Gomperts E, Courter S. A multicenter study of recombinant factor VIII (recombinate): safety, efficacy, and inhibitor risk in previously untreated patients with hemophilia A. Blood 1994; 83:2428–2437.

105 105. Kasper CK. Plasma‐derived versus recombinant factor VIII for the treatment of hemophilia A. Vox Sang 1996; 70(S3):17–20.

106 106. Kalina U, Bickhard H, Schulte S. Biochemical comparison of seven commercially available prothrombin complex concentrates. Int J Clin Pract 2008; 62(10):1614–1622.

107 107. Mannucci PM, Bauer KA, Gringeri A, et al. Thrombin generation is not increased in the blood of hemophilia B patients after the infusion of a purified factor IX concentrate. Blood 1990; 76:2540–2545.

108 108. Fenger‐Eriksen C, Lindberg‐Larsen M, Christensen AQ, et al. Fibrinogen concentrate substitution therapy in patients with massive haemorrhage and low plasma fibrinogen concentrations. Br J Anaesth 2008; 101(6):769–773.

109 109. Peyvandi F. Results of an international, multicentre pharmacokinetic trial in congenital fibrinogen deficiency. Thromb Res 2009; 124(Suppl 2):S9–S11.

110 110. Rahe‐Meyer N, Pichlmaier M, Haverich A, et al. Bleeding management with fibrinogen concentrate targeting a high‐normal plasma fibrinogen level: a pilot study. Br J Anaesth 2009; 102(6):785–792.

111 111. Levy JH, Goodnough LT. How I use fibrinogen replacement therapy in acquired bleeding. Blood 2015; 125(9):1387–1393.

112 112. Barandun S, Kistler P, Jeunet F, Isliker H. Intravenous administration of human γ‐globulin. Vox Sang 1962; 7(2):157–174.

113 113. Knezevic‐Maramica I, Kruskall MS. Intravenous immune globulins: an update for clinicians. Transfusion 2003; 43(10):1460–1480.

114 114. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol 2017; 139(3):S1–S46.

115 115. Ratko TA. Recommendations for off‐label use of intravenously administered immunoglobulin preparations. JAMA 1995; 273(23):1865.

116 116. Scaradavou A, Bussel JB. Clinical experience with anti‐D in the treatment of idiopathic thrombocytopenic purpura. Semin Hematol 1998; 35:52–57.

117 117. Rushin J, Rumsey DH, Ewing CA, Sandler SG. Detection of multiple passively acquired alloantibodies following infusions of IV Rh immune globulin. Transfusion 2000; 40(5):551–554.

118 118. McCullough J. Pathogen inactivation: a new paradigm for blood safety. Transfusion. 2007; 47(12):2180–2184.

119 119. Alter HJ. Pathogen Reduction: a precautionary principle paradigm. Transfus Med Rev 2008; 22(2):97–102.

120 120. Webert KE, Cserti CM, Hannon J, et al. Proceedings of a consensus conference: pathogen inactivation—making decisions about new technologies. Transfus Med Rev 2008; 22(1):1–34.

121 121. Prowse C. Properties of pathogen‐inactivated plasma components. Transfus Med Rev 2009; 23(2):124–133.

122 122. Prowse CV. Component pathogen inactivation: a critical review. Vox Sang 2013; 104(3):183–199.

123 123. Doree B, Estcourt LJ, Trivella M. Pathogen‐reduced platelets for prevention of bleeding (review). Reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration, The Cochrane Library, 3rd edn. Chichester, UK: John Wiley & Sons, Ltd., 2013.

124 124. Koenigbauer UF, Eastlund T, Day JW. Clinical illness due to parvovirus B19 infection after infusion of solvent/detergent‐treated pooled plasma. Transfusion 2000; 40(10):1203–1206.

125 125. Flamholz R, Jeon H‐R, Baron JM, Baron BW. Study of three patients with thrombotic thrombocytopenic purpura exchanged with solvent/detergent‐treated plasma: is its decreased protein S activity clinically related to their development of deep venous thromboses? J Clin Apher 2000; 15(3):169–172.

126 126. Solheim B, Hellstern P. Composition, efficacy, and safety of S/D‐treated plasma. Transfusion 2003; 43:1176–1178.

127 127. Scully M, Longair I, Flynn M, et al. Cryosupernatant and solvent detergent fresh‐frozen plasma (Octaplas) usage at a single centre in acute thrombotic thrombocytopenic purpura. Vox Sang 2007; 93(2):154–158.

128 128. Santagostino E, Mancuso M, Morfini E, et al. Solvent/detergent plasma for the prevention of bleeding in recessively inherited coagulation disorders: dosing, pharmacokinetics and clinical efficacy. Haematologica 2006; 91(5):634–639.

129 129. Williamson LM, Cardigan R, Prowse CV. Methylene blue‐treated fresh‐frozen plasma: what is its contribution to blood safety? Transfusion 2003; 43(9):1322–1329.

130 130. Garwood M, Cardigan RA, Drummond O, et al. The effect of methylene blue photoinactivation and methylene blue removal on the quality of fresh‐frozen plasma. Transfusion 2003; 43(9):1238–1247.

131 131. Hornsey VS, Drummond O, Morrison A, et al. Pathogen reduction of fresh plasma using riboflavin and ultraviolet light: effects on plasma coagulation proteins. Transfusion 2009; 49(10):2167–2172.

132 132. Hambleton J, Wages D, Radu‐Radulescu L, et al. Pharmacokinetic study of FFP photochemically treated with amotosalen (S‐59) and UV light compared to FFP in healthy volunteers anticoagulated with warfarin. Transfusion 2002; 42(10):1302–1307.

133 133. Mohr H, Gravemann U, Müller TH. Inactivation of pathogens in single units of therapeutic fresh plasma by irradiation with ultraviolet light. Transfusion 2009; 49(10):2144–2151.

134 134. Mintz PD. Photochemically treated fresh frozen plasma for transfusion of patients with acquired coagulopathy of liver disease. Blood 2006; 107(9):3753–3760.

135 135. Mintz PD, Neff A, MacKenzie M, et al. A randomized, controlled Phase III trial of therapeutic plasma exchange with fresh‐frozen plasma (FFP) prepared with amotosalen and ultraviolet A light compared to untreated FFP in thrombotic thrombocytopenic purpura. Transfusion 2006; 46(10):1693–1704.

136 136. Mohr H, Steil L, Gravemann U, et al. Blood components: a novel approach to pathogen reduction in platelet concentrates using short‐wave ultraviolet light. Transfusion 2009; 49(12):2612–2624.

137 137. Lin L, Cook D, Wiesehahn G, et al. Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long‐wavelength ultraviolet light. Transfusion 1997; 37(4):423–435.

138 138. Goodrich RP, Edrich RA, Li J, Seghatchian J. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends. Transfus Apher Sci 2006; 35(1):5–17.

139 139. Snyder E, Raife T, Lin L, et al. Recovery and life span of 111indium‐radiolabeled platelets treated with pathogen inactivation with amotosalen HCl (S‐59) and ultraviolet A light. Transfusion 2004; 44(12):1732–1740.

140 140. Slichter SJ, Raife TJ, Davis K, et al. Platelets photochemically treated with amotosalen HCl and ultraviolet A light correct prolonged bleeding times in patients with thrombocytopenia. Transfusion 2006; 46(5):731–740.

141 141. van Rhenen D. Transfusion of pooled buffy coat platelet components prepared with photochemical pathogen inactivation treatment: the euroSPRITE trial. Blood 2003; 101(6):2426–2433.

142 142. McCullough J. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: the SPRINT Trial. Blood 2004; 104(5):1534–1541.

143 143. McCullough J. Pathogen inactivation: the penultimate paradigm shift. In: AuBuchon JP, Prowse CV, eds. Pathogen Inactivation: The Penultimate Paradigm Shift. Bethesda, MD: AABB Press, 2010, pp. 99–123.

144 144. Cazenave J‐P, Waller C, Kientz D, et al. An active hemovigilance program characterizing the safety profile of 7483 transfusions with plasma components prepared with amotosalen and UVA photochemical treatment. Transfusion 2010; 50(6):1210–1219.

145 145. Cazenave J‐P, Folléa G, Bardiaux L, et al. A randomized controlled clinical trial evaluating the performance and safety of platelets treated with MIRASOL pathogen reduction technology. Transfusion 2010; 50(11):2362–2375.

146 146. Knutson F, Osselaer J, Pierelli L, et al. A prospective, active haemovigilance study with combined cohort analysis of 19 175 transfusions of platelet components prepared with amotosalen‐UVA photochemical treatment. Vox Sang 2015; 109(4):343–352.

147 147. Cancelas J, Rugg N, Pratt P, et al. In vivo performance and correlation with in vitro parameters of stored RBCs obtained from whole blood treated with mirasol. Transfusion 2010; 50:10A (abstract).

148 148. Cancelas J, Rugg N, Dumont L. Comprehensive evaluation of a new process for S‐303 pathogen‐inactivation of red blood cells. Transfusion 2010; 50:9A (abstract).

149 149. Wages D, Hambleton J, Viele M. RBCs treated with Helinx pathogen inactivation show comparable recovery and survival to standard RBCs in a randomized crossover trial. Blood 2001; 8:449a (abstract).

150 150. Rios J, Hambleton J, Viele M. Helinx treated RBC transfusions are well tolerated and show comparable recovery and survival to control RBCs. Transfusion 2001; 41:S135 (abstract).

151 151. Winter KM, Johnson L, Kwok M, et al. Red blood cell in vitro quality and function is maintained after S‐303 pathogen inactivation treatment. Transfusion 2014; 54(7):1798–1807.

152 152. Benjamin RJ, McCullough J, Mintz PD, et al. Therapeutic efficacy and safety of red blood cells treated with a chemical process (S‐303) for pathogen inactivation: a Phase III clinical trial in cardiac surgery patients. Transfusion 2005; 45(11):1739–1749.

153 153. Aydinok Y, Piga A, Origa R, et al. Amustaline‐glutathione pathogen‐reduced red blood cell concentrates for transfusion‐dependent thalassaemia. Br J Haematol 2019; 186(4):625–636.

154 154. Aydinok Y, Piga A, Origa R, et al. Amustaline‐glutathione pathogen‐reduced red blood cell concentrates for transfusion‐dependent thalassaemia. Br J Haematol 2019; 186(4):625–636.

155 155. Cancelas JA, Rugg N, Fletcher D, et al. In vivo viability of stored red blood cells derived from riboflavin plus ultraviolet light‐treated whole blood. Transfusion 2011; 51(7):1460–1468.

156 156. Allain J‐P, Owusu‐Ofori A, Assennato SM, et al. Prevention of transfusion‐transmitted malaria by treatment of whole blood with the mirasol PRT system. Blood 2015; 126:770 (abstract).

157 157. Kruskall MS, AuBuchon JP, Anthony KY, et al. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion 2000; 40(11):1290–1298.

158 158. Olsson ML, Clausen H. Modifying the red cell surface: towards an ABO‐universal blood supply. Br J Haematol 2008; 140(1):3–12.

159 159. Bradley AJ, Test ST, Murad KL, et al. Interactions of IgM ABO antibodies and complement with methoxy‐PEG‐modified human RBCs. Transfusion 2001; 41(10):1225–1233.

160 160. Silverman T, Weiskopf R. Hemoglobin‐based oxygen carriers: current status and future directions. Transfusion 2009; 49:2495–2515.

161 161. Stowell CP, Levin J, Spiess BD, Winslow RM. Progress in the development of RBC substitutes. Transfusion 2001; 41(2):287–299.

162 162. Bachert SE, Dogra P, Boral LI. Alternatives to transfusion. Am J Clin Pathol 2020; 153(3):287–293.

163 163. Brotman I, Kocher M, McHugh S. Bovine hemoglobin‐based oxygen carrier treatment in a severely anemic Jehovah’s witness patient after cystoprostatectomy and nephrectomy. A A Pract 2019; 12(7):243–245.

164 164. Sloan EP. Diaspirin cross‐linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock. A randomized controlled efficacy trial. JAMA 1999; 282(19):1857.

165 165. Winslow R. αα‐crosslinked hemoglobin: was failure predicted by preclinical testing? Vox Sang 2000; 70:1–20.

166 166. Mullon J, Giacoppe G, Clagett C, et al. Transfusions of polymerized bovine hemoglobin in a patient with severe autoimmune hemolytic anemia. N Engl J Med 2000; 342(22):1638–1643.

167 167. Lanzkron S, Moliterno AR, Norris EJ, et al. Polymerized human Hb use in acute chest syndrome: a case report. Transfusion 2002; 42(11):1422–1427.

168 168. Moore EE, Moore FA, Fabian TC, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. J Am Coll Surg 2009; 208(1):1–13.

169 169. Winslow RM. Red cell substitutes. Semin Hematol 2007; 44(1):51–59.

170 170. Davis JM, El‐Haj N, Shah NN, et al. Use of the blood substitute HBOC‐201 in critically ill patients during sickle crisis: a three‐case series. Transfusion 2018; 58(1):132–137.

171 171. Expanded Access Study of HBOC‐201 (Hemopure) for the Treatment of Life‐Threatening Anemia. NCT01881503. Available from: https://clinicaltrials.gov/ct2/show/NCT01881503 (cited November 6, 2019).

172 172. Gould SA, Rosen AL, Sehgal LR, et al. Fluosol‐DA as a Red‐Cell Substitute in Acute Anemia. N Engl J Med 1986; 314(26):1653–1656.

Transfusion Medicine

Подняться наверх