Читать книгу Data Science - Michael Zimmer - Страница 26
3.1Zwischen Euphorie und Pragmatismus
ОглавлениеData Science (vgl. Kap. 1) und künstliche Intelligenz (KI) elektrisieren in den letzten Jahren viele Menschen und das Potenzial scheint keine Grenzen zu kennen. So sind selbstfahrende Autos mit neuen Geschäftsmodellen für Mobilitätsanbieter oder Chatbots bereits heute – zumindest teilweise – Realität. Dieser Optimismus ist begründet, erfordert aber auch eine kritische Betrachtung. Viele Data-Sciencebasierte Anwendungen, die aktuell in den Medien besprochen werden, sind zwar kein reines Wunschdenken, aber eben auch noch keine den Menschen ersetzende Realität. Selbstfahrende Lkws funktionieren beispielsweise auf leeren Highways sehr gut, in Großstädten sind wir aber derzeit noch weit vom selbstfahrenden Auto entfernt. Gerade die Fehleranfälligkeit ist bei Bilderkennungsverfahren zurzeit noch nicht zu verachten. So erkennen Algorithmen in einem gelb-schwarzgestreiften Bild einen Schulbus.1
In diesem Kapitel wird anhand eines konkreten Beispiels aufgezeigt, unter welchen Rahmenbedingungen der Einsatz von Data Science im Allgemeinen und KI im Speziellen zum Erfolg führen kann.
Es ist zunächst einmal wichtig zu verstehen, dass die Technologien, die heute als KI bezeichnet werden (oft liest man auch im Deutschen die Abkürzung AI – Artificial Intelligence), nicht völlig neu sind, sondern sich über mehrere Jahrzehnte entwickelt haben (vgl. Kap. 1).
KI-Methoden wie Bilderkennung und Natural Language Processing sind erst durch die Weiterentwicklungen der vergangenen Jahre möglich geworden. Viele Anwendungsfälle sind aber mitnichten auf die neuesten Entwicklungen in diesem Bereich angewiesen. Oft liefert eine konventionellere statistische Methode ebenso gute Ergebnisse.2 Zumal diese sich oft wesentlich einfacher und kostengünstiger anwenden lässt.
Dagegen bedeutet die nachhaltige Einführung von KI-Methoden häufig ein nicht zu unterschätzendes Investment in Personal und Technologien, dem ein nicht minderer Ertrag gegenüberstehen sollte. Um hier abwägen zu können, müssen Ziele und Erfolgskontrolle klar definiert sein, doch genauso ist auch ein gewisses Maß der ergebnisoffenen Erprobung neuer Technologien sinnvoll (vgl. Kap. 13).
Jenseits der Fragen technischer Implementierung braucht es ebenso ein Bewusstsein für die arbeitsalltäglichen Weiterungen, die der Einsatz von künstlicher Intelligenz nach sich zieht. Denn: Selbst ein guter Business Case kann scheitern, wenn kein Wandel gelingt. In der einen oder anderen Form bedeutet Digitalisierung immer, Dinge zu ändern. Wird nach einer Einführung nach wie vor unverändert weitergearbeitet, kann keiner der erhofften Vorteile realisiert werden. Daher ist es wichtig, sehr genau zu bedenken, wie Wandel in der eigenen Organisation gelingen kann.
Es gibt also einiges, das in Betracht gezogen werden sollte, bevor man sich blindlings in ein verklärtes Utopia der künstlichen Intelligenz begibt.