Читать книгу Renewable Energy for Sustainable Growth Assessment - Группа авторов - Страница 107

References

Оглавление

1. N. Kraiem, M. Lajili, L. Limousy, R. Said, and M. Jeguirim, “Energy recovery from Tunisian agri-food wastes : Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc,” Energy, vol. 107, pp. 409–418, 2016.

2. “Current Status | Ministry of New and Renewable Energy, Government of India,” https://mnre.gov.in/bio-energy/current-status, 2020.

3. “IRENA – International Renewable Energy Agency.” https://www.irena.org/, 2020.

4. “MNRE - Publication.” https://mnre.gov.in/img/documents/uploads/file_f-1597797108502.pdf,

5. J. Zhang and X. Zhang, “The thermochemical conversion of biomass into biofuels,” in Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and other Industrial Applications, Elsevier, pp. 327–368, 2019.

6. Z. Moravvej, M. A. Makarem, and M. R. Rahimpour, “The fourth generation of biofuel,” in Second and Third Generation of Feedstocks: The Evolution of Biofuels, Elsevier, pp. 557–597, 2019.

7. C. C. Xu, B. Liao, S. Pang, L. Nazari, N. Mahmood, M.S.H.K Tushar, A. Dutta, and M.B Ray, “Biomass Energy,” in Comprehensive Energy Systems, vol. 1–5, Elsevier Inc., pp. 770–794, 2018.

8. Y. Demirel, “Biofuels,” in Comprehensive Energy Systems, vol. 1–5, Elsevier Inc., pp. 875–908, 2018.

9. C. L. Williams, A. Dahiya, and P. Porter, “Introduction to Bioenergy,” in Bioenergy, Elsevier, pp. 5–36, 2015.

10. S. Khan, V. Paliwal, V. V. Pandey, and V. Kumar, “Biomass as Renewable Energy,” pp. 301–304, 2015.

11. A. Ray and S. De, “Renewable Electricity Generation – Effect on GHG Emission,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 728–735, 2020.

12. N. T. Kalyani and S. J. Dhoble, Chapter 10 - “Empowering the Future With Organic Solar Cell Devices,” in Nanomaterials for Green Energy, Elsevier Inc., pp. 325–350, 2018.

13. S. Zafar, “What Is the Energy Crisis,” https://www.linkedin.com/pulse/what-energy-crisissultan-zafar-1, 2016.

14. “Global Energy Review 2020 – Analysis - IEA.” https://www.iea.org/reports/global-energyreview-2020, 2020.

15. V. Manieniyan, M. Thambidurai, and R. Selvakumar, “Study on Energy Crisis and the Future of Fossil,” Proc. SHEE, no. October, pp. 7–12, 2009.

16. S. Mohammad, “Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in,” Renew. Energy, vol. 154, pp. 29–37, 2020, doi: 10.1016/j.renene.2020.02.102.

17. A. Kounda, “India ’ s renewable energy generation grows 9 . 46 per cent in Jan 2020,” https://energy.economictimes.indiatimes.com/news/renewable/indias-renewable-energy-generation-grows-9-46-per-cent-in-jan-2020/74442008, 2020.

18. H. S. K. Nathan and L. Hari, “Towards a new approach in measuring energy poverty: Household level analysis of urban India,” Energy Policy, vol. 140, p. 111397, 2020.

19. R. H. Acharya and A. C. Sadath, “Implications of energy subsidy reform in India,” Energy Policy, vol. 102, pp. 453–462, 2017.

20. A. A. Amrutha, P. Balachandra, and M. Mathirajan, “Role of targeted policies in mainstreaming renewable energy in a resource constrained electricity system: A case study of Karnataka electricity system in India,” Energy Policy, vol. 106, pp. 48–58, 2017.

21. T. Kar and S. Keles, “Environmental impacts of biomass combustion for heating and electricity generation,” J. Eng. Res. Appl. Sci., vol. 5, no. December, pp. 458–465, 2016.

22. N. L. Yadav, I. C., & Devi, “Biomass burning, regional air quality, and climate change,” Earth Syst. Environ. Sci., pp. 386–391, 2018.

23. C. Scaraffuni, J. Repke, and M. Meyer, “Diauxie during biogas production from collagen-based substrates,” Renew. Energy, vol. 141, pp. 20–27, 2019.

24. F. Bücker et al., “Fish waste : An ef fi cient alternative to biogas and methane production in an anaerobic mono-digestion system,” Renew. Energy, vol. 147, pp. 798–805, 2020.

25. A. Ware and N. Power, “Biogas from cattle slaughterhouse waste : Energy recovery towards an energy self-suf fi cient industry in Ireland,” Renew. Energy, vol. 97, pp. 541–549, 2016.

26. O. Kyung, J. Yong, J. Kim, and J. Woo, “Bench-scale production of sewage sludge derived-biodiesel ( SSD-BD ) and upgrade of its quality,” Renew. Energy, vol. 141, pp. 914–921, 2019.

27. K. Malik, S. Ahlawat, N. Kumari, S. Mehta, and A. S. Kumar, “Bioconversion of paddy straw for bio-ethanol production,” J. Pharmacogn. Phytochem., vol. 9, no. 3, pp. 1091–1093, www.phyto-journal.com, 2020.

28. B. B. Cardias, T. C. Trevisol, G. G. Bertuol, J. A. V. Costa, and L. O. Santos, “Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields,” Waste and Biomass Valorization, no. 0123456789, pp. 1–9, 2020.

29. N. Sriram and M. Shahidehpour, “Renewable biomass energy,” 2005 IEEE Power Eng. Soc. Gen. Meet., vol. 1, pp. 612–617, 2005.

30. D. Petković, “Large Biomass Burners for Fuel Switch in Existing Fossil Fuel Based Plants,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 403–406, 2020.

31. F. W. Bai, S. Yang, and N. W. Y. Ho, “Fuel ethanol production from lignocellulosic biomass,” in Comprehensive Biotechnology, Elsevier, pp. 49–65, 2019.

32. J. Huang, Y. Du, T. Bao, M. Lin, J. Wang, and S. T. Yang, “Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: Kinetics and cost analysis,” Bioresour. Technol., vol. 292, p. 121969, 2019.

33. “Annual Reports | Ministry of Petroleum and Natural Gas | Government of India.” http://petroleum.nic.in/sites/default/files/AR_2019-20E.pdf, 2020.

34. S. B. Montoro, J. Lucas, D. F. L. Santos, and M. S. S. M. Costa, “Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production,” J. Clean. Prod., vol. 226, pp. 1082–1091, 2019.

35. F. A. Gabra, M. H. Abd-Alla, A. W. Danial, R. Abdel-Basset, and A. M. Abdel-Wahab, “Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops,” Biocatal. Agric. Biotechnol., vol. 19, p. 101112, 2019.

36. N. S. P. M. S. Sajeev and M. L. J. G. Padmaja, “Bioethanol production from microwave - assisted acid or alkali - pretreated agricultural residues of cassava using separate hydrolysis and fermentation ( SHF ),” 3 Biotech, vol. 8, no. 1, p. 69, 2018.

37. Y. Liu, W. Chen, Y. Huang, Y. Chang, I. Chu, S. Tsai, and Y. Wei, “Production of bioethanol from Napier grass via simultaneous sacchari fi cation and co-fermentation in a modi fi ed bioreactor,” Bioscience and Bioengineering, vol. 124, no. 2, pp. 184–188, 2017.

38. S. Raghavi, R. Sindhu, P. Binod, E. Gnansounou, and A. Pandey, “Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash,” Bioresour. Technol., vol. 199, pp. 202–210, 2015.

39. W. Wu, W. Hung, K. Lo, Y. Chen, H. Wan, and K. Cheng, “Bioethanol Production from Taro Waste Using Thermo-tolerant Yeast Kluyveromyces marxianus K21,” Bioresour. Technol., 2015, vol. 201, pp. 27–32, 2016.

40. R. C. Anyanwu, C. Rodriguez, A. Durrant, and A. G. Olabi, “Micro-Macroalgae Properties and Applications,” in Reference Module in Materials Science and Materials Engineering, Elsevier, 2018.

41. K. Ling, W. Chen, H. Sheen, J. Chang, and C. Lin, “Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction,” Fuel, vol. 279, no. February, p. 118435, 2020.

42. C. Nie, H. Pei, L. Jiang, J. Cheng, and F. Han, “Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment,” Renew. Energy, vol. 122, pp. 517–525, 2018.

43. I. Pancha, K. Chokshi, R. Maurya, S. Bhattacharya, P. Bachani, and S. Mishra, “Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production,” Bioresour. Technol., 2015.

44. R. L. Costa, T. V. Oliveira, J. D. S. Ferreira, V. L. Cardoso, F. Regina, and X. Batista, “Bioresource Technology Prospective technology on bioethanol production from photofermentation,” Bioresour. Technol., vol. 181, pp. 330–337, 2015.

45. S. Ho, S. Huang, C. Chen, T. Hasunuma, and A. Kondo, “Biore source Technology Bioethanol production using carbohydrate-rich microalgae biomass as feedstock,” Bioresour. Technol., vol. 135, pp. 191–198, 2013.

46. A. Qarri and A. Israel, “Seasonal biomass production , fermentable sacchari fi cation and potential ethanol yields in the marine macroalga Ulva sp . (Chlorophyta),” Renew. Energy, vol. 145, pp. 2101–2107, 2020.

47. V. Kumar, M. Nanda, H. C. Joshi, A. Singh, and S. Sharma, “Production of biodiesel and bioethanolusingalgal biomass harvested from fresh water river,” Renew. Energy, vol. 116, pp. 606–612, 2017.

48. L. F. Huang, Y. K. Liu, S. C. Su, C. C. Lai, C. R. Wu, T. J. Chao, and Y. H. Yang, “Genetic engineering of transitory starch accumulation by knockdown of OsSEX4 in rice plants for enhanced bioethanol production,” Biotechnology and Bioengineering, vol. 117, no. 4, pp. 933-944, 2020.

49. G. D’Auria, “Microalgal Biomass Recycling: From Filter to Feed,” in Reference Module in Food Science, Elsevier, 2019.

50. R. Das, S. Das, and C. Bhattacharjee, “CO2 Sequestration Using Algal Biomass and its Application as Bio Energy,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 372–384, 2020.

51. J. Moncada, J. A. Tamayo, and C. A. Cardona, “Integrating first, second, and third generation biorefineries : Incorporating microalgae into the sugarcane biorefinery,” Chem. Eng. Sci., vol. 118, pp. 126–140, 2014.

52. Y. K. Liu, C. A. Yang, W. C. Chen, and Y. H. Wei, “Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy,” J. Biosci. Bioeng., vol. 114, no. 2, pp. 198–203, 2012.

53. C. Liu and S. Wu, “From biomass waste to biofuels and biomaterial building blocks,” Renew. Energy, pp. 1–7, 2015.

54. M. A. Day, U. Türker, and A. O. Avc, “Assessment of the energy potential of agricultural biomass residues in Turkey,” Renew. Energy, vol. 138, pp. 610–619, 2019.

55. M. Ochnio and D. Karda, “Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets,” vol. 149, pp. 1246–1253, 2019.

56. E. Freitas, D. Medeiros, S. Afonso, M. Silveira, M. Aur, and R. Andreazza, “Physicochemical characterization of oil extraction from fi shing waste for biofuel production,” vol. 143, pp. 471–477, 2019.

57. R. I. Egorov, A. S. Zaitsev, H. Li, X. Gao, and P. A. Strizhak, “Intensity dependent features of the light-induced gasi fi cation of the waste-derived coal-water compositions,” Renew. Energy, vol. 146, pp. 1667–1675, 2020.

58. S. G. Sahu, “Biomass-Coal Cocombustion,” in Encyclopedia of Sustainable Technologies, Elsevier, pp. 441–446, 2017.

59. M. Mohammadi, I. Harjunkoski, S. Mikkola, and S. L. Jämsä-Jounela, “Optimal planning of a waste management supply chain,” in Computer Aided Chemical Engineering, vol. 44, Elsevier B.V., pp. 1609–1614, 2018.

60. M. Albanna, “Anaerobic digestion of the organic fraction of municipal solid waste,” in Management of Microbial Resources in the Environment, vol. 9789400759312, Springer Netherlands, pp. 313–340, 2013.

61. F. Ebrahimian, K. Karimi, and R. Kumar, “Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste,” Waste Manag., vol. 116, pp. 40–48, 2020.

62. M. Logan and C. Visvanathan, “Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects,” Waste Manag. Res., vol. 37, no. 1_suppl, pp. 27–39, 2019.

63. L. Lijó, S. González-garcía, J. Bacenetti, and M. T. Moreira, “The environmental effect of substituting energy crops for food waste as feedstock for biogas production Lucía,” Energy, vol. 137, pp.1130-1143, 2017.

64. R. Feiz, M. Johansson, E. Lindkvist, and J. Moestedt, “Key performance indicators for biogas production d methodological insights on the life-cycle analysis of biogas production from source- separated food waste,” Energy, vol. 200, pp. 117-462, 2020.

65. Y. Long, H. Wang, X. Yu, D. Shen, J. Yin, and T. Chen, “Effect of activated persulfate on gas production from food waste anaerobic digestion,” Energy, vol. 165, pp. 343-348, 2018.

66. H. Guven, M. Evren, R. Kaan, H. Ozgun, and I. Isik, “Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal waste water and food waste,” Energy, vol. 172, pp.1027-1036, 2019.

67. N. Vats, A. A. Khan, and K. Ahmad, “Observation of biogas production by sugarcane bagasse and food waste in different composition combinations,” Energy, vol. 185, pp. 1100–1105, 2019.

68. J. Zhang, W. Li, J. Lee, K. Loh, Y. Dai, and Y. W. Tong, “Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment,” Energy, vol. 137, pp. 479-486, 2017.

69. I. S. Zarkadas, A. S. So, E. A. Voudrias, and G. A. Pilidis, “Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters : Focussing on mixing ratios,” Renewable Energy, vol. 80, pp. 432–440, 2015.

70. A. Demirbas, G. Edris, and W. M. Alalayah, “Environmental Effects Sludge production from municipal wastewater treatment in sewage treatment plant,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 39, no. 10, pp. 999–1006, 2017.

71. A. Gil, J. A. Siles, A. F. Chica, J. A. Siles, and A. F. Chica, “Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge,” Renewable Energy, vol. 115, pp. 917– 925, 2017.

72. M. Burducea A. Lobiuc, M. Asandulesa, M.F. Zaltariov, I. Burducea, S.M. Popescu, and V.D. Zheljazkov, “Effects of Sewage Sludge Amendments on the Growth and Physiology of Sweet Basil,” Agronomy, vol. 9, p. 548, 2019.

73. D. Kwak, “Cause of scum formation on the water surface of flocculation basin in water treatment plant,” Desaliation and Water Treatment, vol. 53, no. 8, pp. 2092-2099, 2015.

74. Y. Wang, W. Yi, F. Sha, B. Xiaojuan, Z. Jingchan, and X. Siqing, “Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants,” Waste Manag., vol. 47, no. May 2018, pp. 91–97, 2015.

75. J. A. Villamil, A. F. Mohedano, J. S. Martín, J. J. Rodriguez, and M. A. De Rubia, “Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge . A new approach for sewage sludge management,” Renew. Energy, vol. 146, pp. 435–443, 2020.

76. S. R. Naqvi, R. Tariq, Z. Hameed, I. Ali, M. Naqvi, W.H. Chen, and M. Shahbaz “Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method,” Renew. Energy, vol. 131, pp. 854-860, 2018.

77. M. A. De Rubia, J. A. Villamil, J. J. Rodriguez, and A. F. Mohedano, “Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge,” Renew. Energy, vol. 127, pp. 697-704, 2018.

78. A. Fabregat, C. Bengoa, M. P. Caporgno, R. Trobajo, and N. Caiola, “Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions,” Renew. Energy, vol. 75, pp. 374–380, 2015.

79. A. Lopez, G. Mascolo, G. Mininni, and C. Pastore, “Ef fi cient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel,” Renew. Energy, vol. 90, pp. 55–61, 2016.

80. R. Wei, H. Li, Y. Chen, Y. Hu, H. Long, J. Li, and C. C. Xu, “Environmental Issues Related to Bioenergy,” in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2020.

81. M. Amer and A. Elwardany, “Biomass Carbonization,” in Renewable Energy - Resources, Challenges and Applications, IntechOpen, pp. 211, 2020.

82. L. C. R. Sá, L. M. E. F. Loureiro, L. J. R. Nunes, and A. M. M. Mendes, “Torrefaction as a pretreatment technology for chlorine elimination from biomass: A case study using eucalyptus globulus labill,” Resources, vol. 9, no. 5, p. 54, May 2020.

83. L. J. R. Nunes, “A Case Study about Biomass Torrefaction on an Industrial Scale: Solutions to Problems Related to Self-Heating, Difficulties in Pelletizing, and Excessive Wear of Production Equipment,” Appl. Sci., vol. 10, no. 7, p. 2546, 2020.

84. L. J. R. Nunes, “Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms,” Clean Technol., vol. 2, no. 3, pp. 270–289, 2020.

85. P. Grammelis, N. Margaritis, and D. S. Kourkoumpas, “Pyrolysis Energy Conversion Systems,” in Comprehensive Energy Systems, vol. 4–5, Elsevier Inc., pp. 1065–1106, 2018.

86. A. G. Daful and M. R Chandraratne, “Biochar Production From Biomass Waste-Derived Material,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 370–378, 2020.

87. X. Yang, D. Han, Y. Zhao, R. Li, and Y. Wu, “Environmental evaluation of a distributed-centralized biomass pyrolysis system: A case study in Shandong, China,” Sci. Total Environ., vol. 716, p. 136915, 2020.

88. V. S. Sikarwar and M. Zhao, “Biomass Gasification,” in Encyclopedia of Sustainable Technologies, Elsevier, pp. 205–216, 2017.

89. S. Guran, “Sustainable waste-to-energy technologies: Gasification and pyrolysis,” in Sustainable Food Waste-to-Energy Systems, Elsevier, pp. 141–158, 2018.

90. M. C. Maguyon-Detras, M. V. P. Migo, N. Van Hung, and M. Gummert, “Thermochemical Conversion of Rice Straw,” in Sustainable Rice Straw Management, Springer International Publishing, pp. 43–64, 2020.

91. R. Alrefai, A. M. Alrefai, J. Stokes, and K. Y. Benyounis, “The Production of Biogas, Biodiesel as High-Value Bio-Based Product and Multiple Bio-Products Through an Integration Approach of the Anaerobic Digestion and Fermentation Processes,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 686–694, 2020.

92. Y. Chen et al., “Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge,” J. Clean. Prod., vol. 277, p. 123998, 2020.

93. S. Zafar, “Biomass Cogeneration Systems,” https://www.bioenergyconsult.com/biomass-cogeneration/, 2019.

94. F. Fantozzi and P. Bartocci, “Biomass feedstock for IGCC systems,” in Integrated Gasification Combined Cycle (IGCC) Technologies, Elsevier Inc., pp. 145–180, 2017.

95. A. Bhattacharya, D. Manna, B. Paul, and A. Datta, “Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis,” Energy, vol. 36, no. 5, pp. 2599–2610, 2011.

96. C. Loha, H. Chattopadhyay, P. K. Chatterjee, and G. Majumdar, “Co-Firing of Biomass to Reduce CO2 Emission,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 385–394, 2020.

97. M. Börjesson and E. O. Ahlgren, “Biomass CHP energy systems: A critical assessment,” in Comprehensive Renewable Energy, vol. 5, Elsevier Ltd, pp. 87–97, 2012.

98. V. Thangarasu and R. Anand, “Comparative evaluation of corrosion behavior of aegle marmelos correa diesel, biodiesel, and their blends on aluminum and mild steel metals,” in Advanced Biofuels: Applications, Technologies and Environmental Sustainability, Elsevier, pp. 443–471, 2019.

99. M. Mohadesi, B. Aghel, M. Maleki, and A. Ansari, “Production of biodiesel from waste cooking oil using a homogeneous catalyst : Study of semi-industrial pilot of microreactor,” Renew. Energy, vol. 136, pp. 677–682, 2019.

100. H. V Srikanth, J. Venkatesh, G. Sharanappa, and M. Bhaskar, “Acetone and diethyl ether: Improve Cold Flow Properties of Dairy Washed Milk- Scum Biodiesel,” Renew. Energy, vol. 130, pp. 446–451, 2018.

101. H. Wei, Y. Yingting, G. Jingjing, Y. Wenshi, and T. Junhong, “Lignocellulosic Biomass Valorization: Production of Ethanol,” in Encyclopedia of Sustainable Technologies, Elsevier, pp. 601–604, 2017.

102. X. Lu, T. Han, J. Jiang, K. Sun, Y. Sun, and W. Yang, “Comprehensive insights into the influences of acid-base properties of chemical pretreatment reagents on biomass pyrolysis behavior and wood vinegar properties,” J. Anal. Appl. Pyrolysis, vol. 151, p. 104907, 2020.

103. W. Liu, R. Wu, Y. Hu, Q. Ren, Q. Hou, and Y. Ni, “Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment,” Bioresour. Technol., vol. 316, p. 123920, 2020.

104. W. Song, L. Peng, D. Bakhshyar, L. He, and J. Zhang, “Mild O2-aided alkaline pretreatment effectively improves fractionated efficiency and enzymatic digestibility of Napier grass stem towards a sustainable biorefinery,” Bioresour. Technol., vol. 319, p. 124162, 2021.

105. H. Xu et al., “Comprehensive analysis of important parameters of choline chloride-based deep eutectic solvent pretreatment of lignocellulosic biomass,” Bioresour. Technol., vol. 319, p. 124209, 2020.

106. D. Ilanidis, G. Wu, S. Stagge, C. Martín, and L. J. Jönsson, “Effects of redox environment on hydrothermal pretreatment of lignocellulosic biomass under acidic conditions,” Bioresour. Technol., vol. 319, p. 124211, 2020.

107. C. Li, Y. Chen, D. Qin, and Y. Chen, “Cultivation of phagotrophic algae with microbial cells released from waste activated sludge: An evaluation of different pretreatment methods to enhance release of microbial cells from sludge flocs,” Process Saf. Environ. Prot., vol. 145, pp. 388–394, 2020.

108. L. J. Ríos-González, M. A. Medina-Morales, J. A. Rodríguez-De la Garza, A. Romero-Galarza, D. D. Medina, and T. K. Morales-Martínez, “Comparison of dilute acid pretreatment of agave assisted by microwave versus ultrasound to enhance enzymatic hydrolysis,” Bioresour. Technol., vol. 319, p. 124099, 2021.

109. E. Kendir Çakmak and A. Ugurlu, “Enhanced biogas production of red microalgae via enzymatic pretreatment and preliminary economic assessment,” Algal Res., vol. 50, p. 101979, 2020.

110. A. Valles, F. J. Álvarez-Hornos, V. Martínez-Soria, P. Marzal, and C. Gabaldón, “Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw,” Fuel, vol. 282, p. 118831, 2020.

111. F. Wirawan et al., “Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process,” Appl. Energy, vol. 266, p. 114871, 2020.

112. L. Liu et al., “Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production,” Energy, vol. 168, pp. 946–952, 2019.

113. D. Nagarajan, D. J. Lee, and J. S. Chang, “Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production,” Int. J. Hydrogen Energy, vol. 44, no. 28, pp. 14362– 14379, 2019.

114. C. L. Tri and I. Kamei, “Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing,” Bioresour. Technol., vol. 305, p. 123065, 2020.

115. N. Singh, A. Gupta, A. S. Mathur, C. Barrow, and M. Puri, “Integrated consolidated bioprocessing for simultaneous production of Omega-3 fatty acids and bioethanol,” Biomass and Bioenergy, vol. 137, p. 105555, 2020.

116. Wang, M. Chae, D. Sauvageau, and D. C. Bressler, “Improving ethanol productivity through self-cycling fermentation of yeast: A proof of concept,” Biotechnol. Biofuels, vol. 10, no. 1, p. 193, Aug. 2017, doi: 10.1186/s13068-017-0879-9.

117. R. V Agustin, “The Impact of Self-Cycling Fermentation on the Production of Shikimic Acid in Populations of Engineered Saccharomyces cerevisiae,” 2015.

118. B. Zielinska and V. Samburova, “Residential and non-residential biomass combustion: Impacts on air quality,” in Encyclopedia of Environmental Health, Elsevier, pp. 499–507, 2019.

119. S. N. Sinha, “Air pollution from solid fuels,” in Encyclopedia of Environmental Health, Elsevier, pp. 49–60, 2019.

120. J. Grigg, “Biomass smoke and infection: Mechanisms of interaction,” in Encyclopedia of Environmental Health, Elsevier, 2019, pp. 392–396, 2019.

121. B. Singh, Z. Szamosi, Z. Siménfalvi, and M. Rosas-Casals, “Decentralized biomass for biogas production. Evaluation and potential assessment in Punjab (India),” Energy Reports, vol. 6, pp. 1702–1714, 2020.

122. M. Samer, S. Abdelaziz, M. Refai, and E. Abdelsalam, “Techno-economic assessment of dry fermentation in household biogas units through co-digestion of manure and agricultural crop residues in Egypt,” Renew. Energy, vol. 149, pp. 226–234, 2020.

123. K. J. Chou, W. Xiong, L. Magnusson, M. Seibert, and P.-C. Maness, “Renewable Hydrogen From Biomass Fermentation,” in Reference Module in Life Sciences, Elsevier, 2020.

124. “GLOBAL BIOENERGY STATISTICS 2019 World Bioenergy Association,” 2019. https://worldbioenergy.org/uploads/191129_WBA_GBS_2019_HQ.pdf, 2020.

125. C. I. Rocabruno-Valdés, R. F. Escobar-Jiménez, Y. Díaz-Blanco, J. F. Gómez-Aguilar, C. M. Astorga-Zaragoza, and J. Uruchurtu-Chavarín, “Corrosion evaluation of Aluminum 6061-T6 exposed to sugarcane bioethanol-gasoline blends using the Stockwell transform,” J. Electroanal. Chem., vol. 878, p. 114667, 2020.

126. C. Stead, Z. Wadud, C. Nash, and H. Li, “Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector,” Sustainability, vol. 11, no. 3, p. 904, 2019.

127. S. H. Shah, “Sustainable Biodiesel Production,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 347–355, 2020.

*Corresponding author: pumahalingam.gri@gmail.com

Renewable Energy for Sustainable Growth Assessment

Подняться наверх