Читать книгу Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie - James J. Keeler - Страница 56

Abschnittsübergreifende Aufgaben

Оглавление

A3.1 Der Joule-Thomson-Koeffizient ist in Gl. (2.46) definiert, μ = (∂T/∂p)H. Bei einer Joule-Thomson-Expansion (siehe Abschn. 2.4 des Lehrbuchs) ist die Enthalpie konstant, daher ergibt sich für die Temperaturänderung


Nach der Expansion ist die Temperatur des Gases daher 373 − 20,7. = 3,52… × 102 K.

Zur Berechnung der Entropieänderung teilen wir die Expansion gedanklich auf in einen ersten Schritt, der bei konstanter Temperatur stattfindet, und einen zweiten Schritt, in dem das Gas bei konstantem Druck abgekühlt wird. Die Entropieänderung für den ersten Schritt ist durch Gl. (3.19) gegeben,


Zur Berechnung der Entropieänderung des zweiten Schritts verwenden wir die passende Maxwell- Beziehung aus Tab. 3.5 des Lehrbuchs, (∂ S /∂ p)T = - (∂V/∂T)P. Im vorliegenden Fall gilt pVm = RT (1 + Bp), und der temperaturabhängige Virialkoeffizient besitzt die Form B = α/T. Daher gilt


Dies entspricht dem Ergebnis für ein ideales Gas. Die Integration von (∂Sm /∂p)T = -R/p liefert daher


Die Gesamtänderung der Entropie ergibt sich aus der Summe der Entropieänderungen für die beiden Teilschritte,


A3.3

1 (a) Die volumenabhängige Variation der Entropie bei konstanter Temperatur ist durch eine der Maxwell-Beziehungen gegeben, die in Tab. 3.5 des Lehrbuchs aufgelistet sind, (∂S/∂V)T = (∂p/∂T)V. Da wir es hier mit molaren Größen zu tun haben, schreiben wir die Van-der-Waals-Zustandsgleichung in der Form damit gilt (∂p/∂T)V = R/(Vm − b). Durch Integration erhalten wirwobei wir den Wert für b dem Anhang des Lehrbuchs entnommen haben. Beachten Sie die Einheiten der molaren Volumina, die hier in dm3 mol − 1 angegeben sind, d. h. in den gleichen Einheiten wie der Van-der-Waals-Koeffizient b.

2 (b) Die temperaturabhängige Variation der Entropie bei konstantem Volumen bzw. konstantem Druck ist durch die Beziehungengegeben. Bei beiden Beziehungen wird vorausgesetzt, dass sich die Wärmekapazitäten im betrachteten Temperaturbereich nicht ändern.Der Gleichverteilungssatz (siehe „Toolkit 7: Der Gleichverteilungssatz“ in Abschn. 2.1 des Lehrbuchs) kann verwendet werden, um den Wert von CV ,m abzuschätzen; für ein ideales Gas gilt Cp,m = CV,m + R. Atome besitzen lediglich drei Freiheitsgrade der Translation, und es gilt sowie Lineare Kreisel besitzen zwei zusätzliche Freiheitsgrade der Rotation, und somit gilt sowie . Nichtlineare Kreisel besitzen sogar drei Freiheitsgrade der Rotation, und es gilt CV ,m = 3 R sowie Cp,m = 4 R.In Abb. 3.8 und 3.9 sind Auftragungen von ∆Sm/R gegen ln(T2/T1) bei konstantem Volumen bzw. konstantem Druck gezeigt.

3 (c) Die temperaturabhängige Änderung der Entropie ist in Gl. (3.18) gegeben; durch Integration erhalten wir eine geeignete Form dieser Beziehung, um die in der Aufgabenstellung erwähnte Form der Wärmekapazität nutzen zu können:Abb. 3.8Abb. 3.9Um dieses Ergebnis auf bequeme Weise zu analysieren, betrachten wir einen definierten Temperaturbereich, z. B. von 273 K bis 473 K, und erstellen eine Auftragung der Beiträge der drei Terme als Funktion der jeweils relevanten Parameter a, b und c. Dem Anhang des Lehrbuchs entnehmen wir folgende (physikalisch sinnvolle) Bereiche für diese drei Parameter: für a wählen wir den Bereich von 15 J K−1 mol−1 bis 80 J K−1 mol−1; für b wählen wir den Bereich von 0 bis 50 × 10−3 J K−2 mol−1; für c wählen wir den Bereich von –10 × 105 J K−1 mol−1 und +2,0 × 105JK−1 mol−1.In Abb. 3.10 sind die Beiträge der drei Terme über den hier gewählten Temperaturbereich gezeigt; wir erkennen, dass Term 1 den mit Abstand größten Beitrag zur Entropieänderung liefert. Außerdem erkennen wir, dass die Beiträge der Terme 1 und 2 in einem Anstieg der Entropie mit der Temperatur resultieren. Term 3 führt hingegen zu einem negativen Beitrag zur Entropieänderung – zumindest dann, wenn c < 0 ist, was typischerweise der Fall ist.

4 (d) Die Temperaturabhängigkeit der Freien Enthalpie bei konstanter Temperatur ist durch Gl. (3.44b) gegeben, (∂ G /∂ p)T = V. Die physikalische Bedeutung dieses partiellen Differenzials ist – wie wirAbb. 3.10Abb. 3.11unmittelbar sehen – dass diese Größe dem Volumen des Systems entspricht. Für ein ideales Gas gilt V = nRT/p; nach Integration erhalten wir daher einfach ∆G = nRT ln(pE/pA), was Gl. (3.50) entspricht. In Abb. 3.11 ist eine Auftragung von ∆G/nRT gegen pE /pA gezeigt. Wir erkennen, dass die Freie Enthalpie bei konstant gehaltener Temperatur mit dem Druck ansteigt.

5 (e) Die Abhängigkeit des Fugazitätskoeffizienten vom Kompressionsfaktor Z ist durch die folgende Beziehung gegeben:Nun drücken wir die Größen Druck, Volumen und Temperatur über die reduzierten Variablen pr , Vr und Tr aus; wir schreibenwobei die kritischen Werte von p, V und T gegeben sind durchFür den Kompressionsfaktor Z können wir daher schreiben:Unser Ziel ist, Z ausschließlich in Abhängigkeit von Vr und Tr auszudrücken; daher ersetzen wir pr durchund schreiben damitDie zu integrierende Variable ist der Druck p, laut Aufgabenstellung soll allerdings Vr näher untersucht werden; wir benötigen daher die folgende Ableitung:Als untere Integrationsgrenze wählen wir p = 0, was Vr = ∞ entspricht. Das zu untersuchende Integral lautet somitDieses komplexe Integral lässt sich am einfachsten mithilfe mathematischer Software lösen. In Abb. 3.12 sind einige repräsentative Ergebnisse für den Fugazitätskoeffizienten ɸ als Funktion von Vr für unterschiedliche Werte von Tr gezeigt.Abb. 3.12

Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie

Подняться наверх