Читать книгу Padaczka. Etiologia - Группа авторов - Страница 7

2. Padaczka uwarunkowana genetycznie
Anna Winczewska-Wiktor, Magdalena Badura-Stronka, Barbara Steinborn
Korzyści z ustalenia podłoża genetycznego padaczki

Оглавление

Wśród korzyści wynikających z ustalenia podłoża genetycznego padaczki należy wymienić: zakończenie „diagnostycznej odysei” (nieustanne konsultacje, wielokrotnie powtarzane badania krwi i płynu mózgowo-rdzeniowego, badania neuroobrazowe często wykonywane w znieczuleniu ogólnym, inwazyjna diagnostyka przedoperacyjna). Uwaga koncentruje się na terapii i pomocy dziecku. Możliwe jest prognozowanie dalszego przebiegu choroby. Rodzice mogą uzyskać wsparcie i wiedzę praktyczną od rodziców i opiekunów dzieci z tą samą chorobą w ramach internetowych grup wsparcia lub stowarzyszeń, np. stowarzyszenia rodziców dzieci z zespołem Dravet. Poznanie przyczyny genetycznej choroby pozwala również udzielić rodzicom porady genetycznej dotyczącej ryzyka ponownego wystąpienia choroby u kolejnych dzieci. Niekwestionowaną korzyścią wynikającą z określenia przyczyny choroby jest możliwość celowanego leczenia. Najlepszym przykładem takiej poniekąd celowanej terapii jest terapia zespołu Dravet i innych zespołów związanych z mutacjami w genie SCN1A. U osób obarczonych mutacjami w tym genie przeciwwskazane są blokery kanałów sodowych, tj. karbamazepina lub lamotrygina, zaleca się leczenie kwasem walproinowym, klobazamem, topiramatem i stiripentolem [82, 83]. Podobna sytuacja ma miejsce w przypadku mutacji w genie SLC2A1, gdzie leczeniem z wyboru jest włączenie diety ketogennej.

Aktualnie trwają badania nad zastosowaniem nowych cząsteczek, dedykowanych do leczenia w zależności od uszkodzenia konkretnych genów. Cząsteczki badane obecnie zamieszczono w tabeli 2.3.


Tabela 2.3. Celowane leczenie padaczki w zależności od uszkodzonego genu [84, 85]

Piśmiennictwo

1. McTague A., Howell K.B., Cross J.H. i wsp.: The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 2016; 15(3): 304–316.

2. Striano P., Vari M.S., Mazzocchetti C. i wsp.: Management of genetic epilepsies: From empirical treatment to precision medicine. Pharmacol Res 2016; 107: 426–429.

3. International League Against Epilepsy Consortium on Complex Epilepsies. Electronic address, e.-a.u.e.a.: Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol 2014; 13(9): 893–903.

4. Myers C.T., Mefford H.C.: Advancing epilepsy genetics in the genomic era. Genome Med 2015; 7: 91.

5. Maljevic S., Reid C.A., Petrou S.: Models for discovery of targeted therapy in genetic epileptic encephalopathies. J Neurochem 2017; 143(1): 30–48.

6. Reid C.A., Berkovic S.F., Petrou S.: Mechanisms of human inherited epilepsies. Prog Neurobiol 2009; 87(1): 41–57.

7. Cheah C.S., Westenbroek R.E., Roden W.H. i wsp.: Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels (Austin) 2013; 7(6): 468–472.

8. Liao Y., Deprez L., Maljevic S. i wsp.: Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 2010; 133(Pt 5): 1403–1414.

9. Wolff M., Johannesen K.M., Hedrich U.B.S. i wsp.: Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140(5): 1316–1336.

10. Ben-Shalom R., Keeshen C.M., Berrios K.N. i wsp.: Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures. Biol Psychiatry 2017; 82(3): 224–232.

11. Carroll L.S., Woolf R., Ibrahim Y. i wsp.: Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation. Psychiatr Genet 2016; 26(2): 60–65.

12. Larsen J., Carvill G.L., Gardella E. i wsp.: The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015; 84(5): 480–489.

13. Maljevic S., Lerche H.: Potassium channel genes and benign familial neonatal epilepsy. Prog Brain Res 2014; 213: 17–53.

14. Biervert C., Schroeder B.C., Kubisch C. i wsp.: A potassium channel mutation in neonatal human epilepsy. Science 1998; 279(5349): 403–406.

15. Miceli F., Soldovieri M.V., Ambrosino P. i wsp.: Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J Neurosci 2015; 35(9): 3782–3793.

16. Barcia G., Fleming M.R., Deligniere A. i wsp.: De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012; 44(11): 1255–1259.

17. Lim C.X., Ricos M.G., Dibbens L.M., Heron S.E.: KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet 2016; 53(4): 217–225.

18. Carvill G.L., Weckhuysen S., McMahon J.M. i wsp.: GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology 2014; 82(14): 1245–1253.

19. Janve V.S., Hernandez C.C., Verdier K.M. i wsp.: Epileptic encephalopathy de novo GABRB mutations impair GABAA receptor function. Ann Neurol 2016 Mar 7. doi: 10.1002/ana.24631.

20. Johannesen K., Marini C., Pfeffer S. i wsp.: Phenotypic spectrum of GABRA1: From generalized epilepsies to severe epileptic encephalopathies. Neurology 2016; 87(11): 1140–1151.

21. Kang J.Q., Macdonald R.L.: Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome. JAMA Neurol 2016; 73(8): 1009–1016.

22. Papandreou A., McTaque A., Trump N. i wsp.: GABRB3 mutations: a new and emerging cause of early infantile epileptic encephalopathy. Dev Med Child Neurol 2016; 58(4): 416–420.

23. Shen D., Hernandez C.C., Shen W. i wsp.: De novo GABRG2 mutations associated with epileptic encephalopathies. Brain 2017; 140(1): 49–67.

24. Moller R.S., Wuttke T.V., Helbig I. i wsp.: Mutations in GABRB3: From febrile seizures to epileptic encephalopathies. Neurology 2017; 88(5): 483–492.

25. McDonald M.M., Markham C.M., Norvelle A. i wsp.: GABAA receptor activation in the lateral septum reduces the expression of conditioned defeat and increases aggression in Syrian hamsters. Brain Res 2012; 1439: 27–33.

26. Baulac S., Huberfeld G., Gourfinkel-An I. i wsp.: First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 2001; 28(1): 46–48.

27. Wallace R.H., Marini C., Petrou S. i wsp.: Mutant GABA(A) receptor gamma2–subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001; 28(1): 49–52.

28. Harkin L.A., Bowser D.N., Dibbens L.M. i wsp.: Truncation of the GABA(A)–receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002; 70(2): 530–536.

29. Cossette P., Liu L., Brisebois K. i wsp.: Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002; 31(2): 184–189.

30. Maljevic S., Krampfl K., Cobilanschi J. i wsp.: A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 2006; 59(6): 983–987.

31. Lemke J.R., Lal D., Reithaler E.M. i wsp.: Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013; 45(9): 1067–1072.

32. Lemke J.R., Geider K., Helbig K.L. i wsp.: Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy. Neurology 2016; 86(23): 2171–2178.

33. Li D., Yuan H., Ortiz-Gonzalez X.R. i wsp.: GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am J Hum Genet 2016; 99(4): 802–816.

34. Smigiel R., Kostrzewa G., Kosinska J. i wsp.: Further evidence for GRIN2B mutation as the cause of severe epileptic encephalopathy. Am J Med Genet A 2016; 170(12): 3265–3270.

35. Hamdan F.F., Srour M., Capo-Chichi J.M. i wsp.: De novo mutations in moderate or severe intellectual disability. PLoS Genet 2014; 10(10): e1004772.

36. Carvill G.L., Heavin S.B., Yendle S.C. i wsp.: Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45(7): 825–830.

37. Suls A., Jaehn J.A., Kecskés A. i wsp.: De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 2013; 93(5): 967–975.

38. O’Roak B.J., Stessman H.A., Boyle E.A. i wsp.: Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun 2014; 5: 5595.

39. Galizia E.C., Myers C.T., Leu C. i wsp.: CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain 2015; 138(Pt 5): 1198–1207.

40. Thomas R.H., Zhang L.M., Carvill G.L. i wsp.: CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology 2015; 84(9): 951–958.

41. Myers C.T., Mefford H.C.: Genetic investigations of the epileptic encephalopathies: Recent advances. Prog Brain Res 2016; 226: 35–60.

42. Paciorkowski A.R., Traylor R.N., Rosenfeld J.A. i wsp.: MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics 2013; 14(2): 99–111.

43. Lambert L., Bienvenu T., Allou L. i wsp.: MEF2C mutations are a rare cause of Rett or severe Rett-like encephalopathies. Clin Genet 2012; 82(5): 499–501.

44. Nakajima J., Okamoto N., Tohyama J. i wsp.: De novo EEF1A2 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy. Clin Genet 2015; 87(4): 356–361.

45. Veeramah K.R., Johnstone L., Karafet T.M. i wsp.: Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013; 54(7): 1270–1281.

46. Dibbens L.M., de Vries B., Donatello S. i wsp.: Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013; 45(5): 546–551.

47. Ishida S., Picard F., Rudolf G. i wsp.: Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013; 45(5): 552–555.

48. Baulac S., Ishida S., Marsan E. i wsp.: Familial focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations. Ann Neurol 2015; 77(4): 675–683.

49. D’Gama A.M., Pochareddy S., Li M. i wsp.: Targeted DNA Sequencing from Autism Spectrum Disorder Brains Implicates Multiple Genetic Mechanisms. Neuron 2015; 88(5): 910–917.

50. Scheffer I.E., Heron S.E., Regan B.M. i wsp.: Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014; 75(5): 782–787.

51. Korenke G.C., Eggert M., Thiele H. i wsp.: Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3. Epilepsia 2016; 57(3): e60–63.

52. Ricos M.G., Hodgson B.L., Pippucci T. i wsp.: Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol 2016; 79(1): 120–131.

53. De Vivo D.C., Trifiletti R.R., Jacobson R.I. i wsp.: Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991; 325(10): 703–709.

54. Dibbens L.M., Tarpey P.S., Hynes K. i wsp.: X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 2008; 40(6): 776–781.

55. Duszyc K., Terczynska I., Hoffman-Zacharska D.: Epilepsy and mental retardation restricted to females: X-linked epileptic infantile encephalopathy of unusual inheritance. J Appl Genet 2015; 56(1): 49–56.

56. Kilstrup-Nielsen C., Rusconi L., La Montanara P. i wsp.: What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012; 2012: 728267.

57. Saitsu H., Kato M., Mizuguchi T. i wsp.: De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008; 40(6): 782–788.

58. Schubert J., Siekierska A., Langlois M. i wsp.: Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 2014; 46(12): 1327–1332.

59. Mignot C., von Stülpnagel C., Nava C. i wsp.: Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J Med Genet 2016; 53(8): 511–522.

60. Hani A.J., Mikati H.M., Mikati M.A.: Genetics of pediatric epilepsy. Pediatr Clin North Am 2015; 62(3): 703–722.

61. Poduri A.: DEPDC5 does it all: shared genetics for diverse epilepsy syndromes. Ann Neurol 2014; 75(5): 631–633.

62. Hallmann K., Zsurka G., Moskau-Hartmann S. i wsp.: A homozygous splice-site mutation in CARS2 is associated with progressive myoclonic epilepsy. Neurology 2014; 83(23): 2183–2187.

63. Italiano D., Striano P., Russo E. i wsp.: Genetics of reflex seizures and epilepsies in humans and animals. Epilepsy Res 2016; 121: 47–54.

64. El Achkar C.M., Olson H.E., Poduri A., Pearl P.L.: The genetics of the epilepsies. Curr Neurol Neurosci Rep 2015; 15(7): 39.

65. Muona M., Berkovic S.F., Dibbens L.M. i wsp.: A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 2015; 47(1): 39–46.

66. Steinborn B., Mazurkiewicz-Beldzinska M., Winczewska-Wiktor A.: Genetyka padaczek. W: Neurologia wieku rozwojowego, red. nauk. B. Steinborn. PZWL Wydawnictwo Lekarskie, Warszawa 2017, 340–362.

67. Latos-Bielenska A., Badura-Stronka M., Piechota M.: Metody badań genetycznych i poradnictwo genetyczne w neurologii. W: Neurologia wieku rozwojowego, red. nauk. B. Steinborn. PZWL Wydawnictwo Lekarskie, Warszawa 2017, 272–291.

68. Wilmshurst J.M., Gaillard W.D., Vinayan K.P. i wsp.: Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia 2015; 56(8): 1185–1197.

69. Ream M.A. Patel A.D.: Obtaining genetic testing in pediatric epilepsy. Epilepsia 2015; 56(10): 1505–1514.

70. Kharbanda M., Tolmie J., Joss S.: How to use… microarray comparative genomic hybridisation to investigate developmental disorders. Arch Dis Child Educ Pract Ed 2015; 100(1): 24–29.

71. Spreiz A., Haberlandt E., Baumann M. i wsp.: Chromosomal microaberrations in patients with epilepsy, intellectual disability, and congenital anomalies. Clin Genet 2014; 86(4): 361–366.

72. Olson H., Shen Y., Avallone J. i wsp.: Copy number variation plays an important role in clinical epilepsy. Ann Neurol 2014; 75(6): 943–958.

73. Epilepsy Phenome/Genome Project Epi, K.C., Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. Ann Neurol 2015; 78(2): 323–328.

74. Bonuccelli A., Valetto A., Orsini A. i wsp.: Maternally derived 15q11.2-q13.1 duplication in a child with Lennox-Gastaut-type epilepsy and dysmorphic features: Clinical-genetic characterization of the family and review of the literature. Am J Med Genet A 2017; 173(2): 556–560.

75. Mefford H.C., Muhle H., Ostertag P. i wsp.: Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 2010; 6(5): e1000962.

76. de Kovel C.G., Trucks H., Helbig I. i wsp.: Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 2010; 133(Pt 1): 23–32.

77. Stuppia L., Antonucci I., Palka G., Gatta V.: Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci 2012; 13(3): 3245–3276.

78. Orsini A., Zara F., Striano P.: Recent advances in epilepsy genetics. Neurosci Lett 2017.

79. Ream M.A., Mikati M.A.: Clinical utility of genetic testing in pediatric drug-resistant epilepsy: a pilot study. Epilepsy Behav 2014; 37: 241–248.

80. Kadalayil L., Rafig S., Rose-Zerilli M.J. i wsp.: Exome sequence read depth methods for identifying copy number changes. Brief Bioinform 2015; 16(3): 380–392.

81. Minassian B.A., Striano P., Avanzini G.: Progressive Myoclonus Epilepsy: The Gene–Empowered Era. Epileptic Disord 2016; 18(S2): 1–2.

82. Chiron C., Dulac O.: The pharmacologic treatment of Dravet syndrome. Epilepsia 2011; 52 Suppl 2: 72–75.

83. Brunklaus A., Ellis R., Reavey E. i wsp.: Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012; 135(Pt 8): 2329–2336.

84. Dhindsa R.S., Goldstein D.B.: Genetic Discoveries Drive Molecular Analyses and Targeted Therapeutic Options in the Epilepsies. Curr Neurol Neurosci Rep 2015; 15(10): 70.

85. Berkovic S.F.: Genetics of Epilepsy in Clinical Practice. Epilepsy Curr 2015; 15(4): 192–196.

Padaczka. Etiologia

Подняться наверх