Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 136

Die Temperaturabhängigkeit der Enthalpie

Оглавление

Wenn die Temperatur eines Stoffs steigt, nimmt auch seine Enthalpie zu. Das Verhältnis zwischen beiden Zunahmen hängt von den genauen Bedingungen des Prozesses ab (beispielsweise können Volumen oder Druck konstant sein). Die Bedingung mit der größten praktischen Bedeutung ist der konstante Druck; beim Auftragen der Enthalpie gegen die Temperatur erhält man dann eine Kurve (Abb. 2-14), deren Steigung als Wärmekapazität bei konstantem Druck Cp bei der jeweiligen Temperatur bezeichnet wird. Formal lautet die Definition

[2.22]

Die Wärmekapazität bei konstantem Druck ist in Analogie zur Wärmekapazität bei konstantem Volumen definiert; beide sind extensive Eigenschaften. Die entsprechende intensive Eigenschaft ist die molare Wärmekapazität bei konstantem Druck Cp,m, die Wärmekapazität pro Mol eines Stoffs.

Mithilfe der Wärmekapazität bei konstantem Druck kann man eine Beziehung zwischen Enthalpieänderung und Temperaturdifferenz herstellen. Für infinitesimale Temperaturänderungen gilt

(2.23a)

Wenn die Wärmekapazität über einen bestimmten Temperaturbereich hinreichend konstant ist, kann man für endliche Änderungen in diesem Bereich auch schreiben

(2.23b)

Eine Erhöhung der Enthalpie kann stets der Zufuhr einer Wärmemenge bei konstantem Druck gleichgesetzt werden; in der Praxis verwendet man Gl. (2-23b) daher in der Form

(2.24)

Aus dieser Gleichung können wir auch ablesen, wie die Wärmekapazität eines Stoffs gemessen werden kann: Eine bestimmte Wärmemenge wird der Substanz bei konstantem Druck zugeführt (letztere Bedingung ist immer erfüllt, wenn das Experiment in einem offenen Gefäß abläuft), dabei wird die Temperaturänderung verfolgt.

In engen Temperaturbereichen darf man die Temperaturabhängigkeit der Wärmekapazität mitunter näherungsweise ignorieren; für ein einatomiges ideales Gas (etwa ein Edelgas) stellt dies eine recht genaue Näherung dar. Für die Fälle, bei denen eine Vernachlässigung dieser Abhängigkeit nicht sinnvoll ist, hat sich die empirische Näherungsfunktion

(2.25)

als zweckmäßig erwiesen. Die empirischen Parameter a, b und c hängen nicht von der Temperatur ab; sie werden durch Anpassung dieses Ausdrucks an experimentelle Daten bestimmt. Typische Werte für einige Gase sind in Tabelle 2-2 aufgeführt.

Physikalische Chemie

Подняться наверх