Читать книгу Electrical and Electronic Devices, Circuits, and Materials - Группа авторов - Страница 23
References
Оглавление1. J.E. Lilienfeld, US Patent 1, 745, 175, (1930, filled October 26, 1926), 1, 877, 840 (1932, filled December 8, 1928), and 1, 900, 018 (1933, filled March 28, 1928).
2. Moore G. E. (1965) Cramming more components onto integrated circuits. Electronics. 38. 114-117.
3. Sverdlov Viktor (2011) Strained Induced Effect in Advanced MOSFETs. Springer Wien. New York. US.
4. Sun Y., Thompson S. E., & Nishida T. (2010) Strain Effect in Semiconductors. Springer. New York. US.
5. Hall H.H., Bardeen J., & Pearson G.L. (1951) The effects of pressure and temperature on the resistance of p-n junctions in germanium. Phys. Rev. 84(1). 129–132.
6. Smith CS. (1954) Piezoresistance effect in germanium and silicon. Phys Rev. 94. 42–49.
7. Herring C., & Vogt E. (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev. 101. 944–961.
8. Manasevit HM, Gergis IS, & Jones AB. (1982) Electron mobility enhancement in epitaxial multilayer Si-Si1−xGex alloy films on (100) Si. Appl Phys Lett, 41. 464–466.
9. People R., Bean J.C., Lang D.V., Sergent A.M., Stormer H.L., Wecht, V, Lynch R.T., & Baldwin K. (1984) Modulation doping in GexSi1-x / Si strained layer heterostructures. Appl Phys Lett. 45. 1231.
10. Maity C. K, Bera L K, & Chattopadhyay S (1998) Topical Review: Strain Si heterostructure field effect Transistor. Semiconductor Science Technology. 13. 1225-1246.
11. Dalapati Goutam Kumar, Chattopadhyay Sanatan, Kwa Kelvin S. K., Olsen Sarah H., Tsang Y. L., Agaiby Rimoon, O’Neill Anthony G., Dobrosz Piotr, & Bull Steve J. (2006) Impact of strained-Si thickness and Ge out diffusion on gate oxide quality for strained-Si surface channel n-MOSFETs. IEEE Transaction on Electron Devices. 53(5). 1142–1152.
12. Ghani T., Armstrong M., Auth C., Bost M., Charvat P., Glass G., Hoffmann T., Johnson K., Kenyon C., Klaus J., McIntyre B., Mistry K., Murthy A., Sandford J., Silberstein M., Sivakumar S., Smith P., Zawadzki K., Thompson S., & Bohr M. (2003) A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. IEEE Int. Electron Devices Meeting Tech. Digest. p.11.6.1.
13. Thompson S.E., Sun G., Wu K., Lim J., & Nishida, T. (2004) Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs. IEEE Int. Electron Devices Meeting Tech. Digest. 221–224.
14. Lim J.S., Thompson S.E., & Fossum J.G. (2004) Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Letters. 25. 731–733.
15. Numata T., Mizuno T., Tezuka T., Koga J., & Takagi, S. (2005). Control of threshold-voltage and short-channel effects in ultrathin strained-SOI CMOS devices. IEEE Trans. Electron Devices. 52(8). 1780–1786.
16. Takagi S., Hoyt J.L., Welser J.J., & Gibbons J.F. (1996) Comparative study of phonon limited mobility of 2 dimensional electrons in strained and unstrained Si MOSFET’s. J. Appl. Phys. 80. 1567.
17. Zhang W., & Fossum J.G. (2005) On the threshold voltage of strained-Si-Si1-xGex MOSFETs. IEEE Trans. Electron Devices. 52. 263–268.
18. Martin J. S., Bournel A., Monsef F., Chassat C., & Dollfus P. (2006) Multi sub-band Monte Carlo simulation of ultrathin double gate MOSFET with 2-D electron gas. Semicond. Sci. Technol. 21. 29–31.
19. Michielis M. D., Esseni D., Tsang Y. L., Palestri P., Selmi L., O’Neill A. G., & Chattopadhyay S. (2007) A Semianalytical Description of the Hole Band Structure in Inversion Layers for the Physically Based Modeling of pMOS Transistors. IEEE Trans. Electron Devices. 54. 2164-73.
20. Batwani H., Gaur M., & Jagadesh Kumar M. (2009) Analytical drain current model for nanoscale strained-Si/SiGe MOSFETs. COMPEL - International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 28(2). 353-371.
21. Chatterjee S., Sikdar S., Chowdhury B. N., & Chattopadhyay S. (2019) Investigation of the performance of strain-engineered silicon nanowire field effect transistors (ε-Si-NWFET) on IOS substrates. Journal of Applied Physics. 125(8). 082506.
22. Sinha K, Rahaman H, & Chattopadhyay S. (2012). A Study on the Performance of Stress Induced p-channel MOSFETs with Embedded Si1-xGex Source/Drain. 5th International Conference on Computers and Devices for Communication (CODEC-2012). India. 1–4.
23. Thompson S. E, Sun G., Choi Y. S., & Nishida T. (2006). Uniaxial-Process-Induced Strained-Si: Extending the CMOS Roadmap. IEEE Transactions on Electron Devices. 53(5). 1010–1020.
24. Xu N., Ho B., Choi M., Moroz V., & Liu T-J. K. (2012). Effectiveness of Stressors in Aggressively Scaled FinFETs. IEEE Transactions on Electron Devices. 59(6). 1592–1598.
25. Yu T-H, Ho J-H, Liu C-W, Wang C-C. Chen W-Y, Chen H-S, Wu K-H, Tu K-C, Hsieh W-H, Huang C-F, Shen T-M, Sheu Y-M, Wu J, & Diaz C.H. (2012) Improvement of Drive Current Prediction in FinFET using Full 3D Process/Stress/Device Simulations. International Conference on Simulation of Semiconductor Processes and Devices, (SISPAD ‘12). USA.
26. Gupta S., Moroz V., Smith L., Lu Q., & Saraswat, K.C. (2014) 7-nm FinFET CMOS Design Enabled by Stress Engineering Using Si, Ge, and Sn,. IEEE Transactions on Electron Devices. 61(5). 1222–1230.
27. Sinha K, Chattopadhyay S, Gupta P. S., & Rahaman H. (2017) A technique to incorporate both tensile and compressive channel stress in Ge FinFET architecture. Journal of Computational Electronics. 16(3). 620–630.
28. Sinha K, Gupta P. S., Rahaman H, & Chattopadhyay S. (2018) Incorporation of Tensile and Compressive channel Stress by Modulating SiGe Stressor length in Embedded Source/Drain Si-FinFET Architecture. IEEE Electron Device Kolkata Conference (EDKCON). India. 126–131.
29. Maity C. K., Chattopadhyay S., Bera L.K. (2007) Strained-Si Heterostructure Field Effect Devices. The Taylor & Francis Group. UK.
30. Sinha K, Gupta P. S., Chattopadhyay S, & Rahaman H, (2016) Investigating the performance of SiGe embedded dual source p-FinFET architecture. Superlattices and Microstructures. 98. 37–45.
31. Harmand J. C., Matsuno T., & Inoue K. (1989). Lattice-Mismatched Growth and Transport Properties of InAlAs/InGaAs Heterostructures on GaAs Substrates. Japanese Journal of Applied Physics. 28(2). Number 7. L1101.
32. Hamada A., Furusawa T., Saito N., & Takeda E., (1991) A new aspect of mechanical stress effects in scaled MOS devices. IEEE Transactions on Electron Devices. 38(4). 895-900.
33. Ito S., Namba H., Yamaguchi K., Hirata T., Ando K., Koyama S., Kuroki S., Ikezawa N., Suzuki T., Saitoh T., & Horiuchi T. (2000) Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design. International Electron Devices Meeting IEEE. 247–250.
34. Gannavaram S., Pesovic N., & Ozturk C. (2000) Low temperature (800°c) recessed junction selective silicon–germanium source/drain technology for sub-70 nm CMOS. IEEE Int. Electron Devices Meeting Tech. Digest. 437–440.
35. Fossum J. G., & Zhang W. (2003) Performance projections of scaled CMOS devices and circuits with strained Si-on-SiGe channels. IEEE Trans Electron Devices. 50(4). 1042–1049.
36. Thompson S. E., Suthram S., Sun Y., Sun G., Parthasarathy S., Chu M., & Nishida, T. (2006). Future of Strained Si/Semiconductors in Nanoscale MOSFETs. International Electron Devices Meeting, San Francisco, CA, 1-4.
37. Arghavani R., Derhacobian N., Banthia V., Balseanu M., Ingle N., M’Saad H., Venkataraman S., Yieh E., Yuan Z., Xia L.-Q., Krivokapic Z., Aghoram U., MacWilliams K., & Thompson S. E. (2007). Strain Engineering to Improve Data Retention Time in Nonvolatile Memory. IEEE Trans Electron Devices, 54(2). 363–365.
38. Xuan Y., Shen T., Xu M., Wu Y. Q., & Ye P. D. (2008) High-performance surface channel In-rich In0.75Ga0.25 As MOSFETs with ALD high-k as gate dielectric. IEEE International Electron Devices Meeting, San Francisco.
39. Yokoyama M., Yasuda T., Takagi H., Yamada H., Fukuhara N., Hata M., Sugiyama M., Nakano Y. Takenaka M., & Takagi S. (2009) High mobility metal S/D III-V-On-Insulator MOSFETs on a Si substrate using direct wafer bonding. Symposium on VLSI Technology, 242–243.
40. Drummond T. J., Zipperian T. E., Fritz I. J., Schirber J. E., & Plut, T. A. (1986) p-channel strained quantum well field-effect transistor. Appl. Phys. Lett. 49, 461.
41. Grivickas, P., McCluskey M. D., & Gupta Y. M. (2009) Transformation of GaAs into an indirect L-band-gap semiconductor under uniaxial strain. Phys. Rev. B, 80, 073201.
42. Montazeri M., Fickenscher M, Smith L. M., Jackson H. E., Yarrison-Rice J., Kang J. H., Gao Q., Tan H. H., Jagadish C., Guo Y., Zou J., Pistol M–E., & Pryor C. E.. (2010) Direct Measure of Strain and Electronic Structure in GaAs/GaP Core−Shell Nanowires. Nano Letters 10 (3), 880-886.
43. Elisa G., Aline F., Thomas L., & Daniele P. (2019).Real-time monitoring of stress evolution during thin film growth by in situ substrate curvature measurement. Journal of Applied Physics. 125(8), 082513.
44. Li S., Chou J–P., Zhang H, Lu Y., & Hu A. (2019). A study of strain-induced indirect-direct bandgap transition for silicon nanowire applications. Journal of Applied Physics, 125(8), 082520.
Email: kunalsinha84@yahoo.co.in