Читать книгу Electrical and Electronic Devices, Circuits, and Materials - Группа авторов - Страница 37

3.1 Introduction

Оглавление

The global energy crisis and depletion of traditional sources of energy (coal, fuel), has captured the attention of the scientific community and is the biggest global challenge that needs to be resolved in the 21st century. It is a top priority to switch from non-renewable to renewable sources of energy (hydro, wind, solar) which are superior in terms of efficiency, sustainability, and long service life. Energy from various sources needs to be stored somewhere and used on-demand. Two important emerging technological candidates are battery and supercapacitor. The task for the scientific community is towards up-gradation of electrochemical energy storage devices (supercapacitors, batteries) and making them efficient to reduce dependency on traditional sources of energy. From traditional capacitors to the supercapacitors available nowadays, the battery is a crucial energy storage device. Among them, Supercapacitors (SC) emerged as a promising alternative to a traditional capacitor having a low capacity and the battery having low power density [1, 2]. The low energy density in SC is due to charge storage limited to the surface, so this is an important parameter that is the focus of research. The energy density of SC is related to the specific capacitance of the electrode materials and the voltage window of the cell. The voltage window of the cell is linked to the electrochemical voltage stability window of the electrolyte used. The strategy has been built to develop novel electrodes with high surface area, high porosity and high effective interaction area for charge storage. Along with this, different charge storage mechanisms have been developed to enhance the overall cell capacitance by tailoring the cell configuration (symmetric/asymmetric/hybrid) and electrode material (carbon/metal oxide/sulfide) [3–5]. In conclusion, research is focused on the development of novel electrode and electrolyte materials as well as tailoring of the existing materials to enhance the electrochemical performance of the SC cell.

The present chapter describes the important development in the field of polymer electrolytes of application in the supercapacitor. The characteristics of polymer electrolytes will be discussed; then the selection criteria for the polymer, salt and additives will be the focus of discussion, followed by the classification of polymer electrolytes.

Electrical and Electronic Devices, Circuits, and Materials

Подняться наверх