Читать книгу Manual de matemáticas financieras - Guillermo L. Dumrauf - Страница 39
Cálculo de la tasa de interés instantánea
ОглавлениеSi ahora realizamos el cociente entre el interés ganado en un infinitésimo de tiempo y el capital invertido, obtenemos la tasa de interés de un infinitésimo de tiempo, que como sabemos recibe el nombre de tasa instantánea:
De manera que la tasa instantánea es igual a la derivada de la función f’(x) dividida por la función f(x), y como la derivada del logaritmo de una función también es igual a la derivada de la función dividida por la función, tendremos:
Por lo tanto, la tasa instantánea representa la derivada del logaritmo natural de la función, y la función del monto compuesto es igual a: f(x) = (1 + i)n, que es una función del tipo ax.
Como la derivada de una función ax = ax ln a, entonces se demuestra:
A continuación, se resumen las derivadas de las funciones más utilizadas:
Si la función es: | Su derivada es: |
1) y = a | 1) y’ = 0 |
2) y = x | 2) y’ = 1 |
3) y = xn | 3) y’ = n · xn-1 |
4) y = a · xn | 4) y’ = a · n · xn-1 |
5) | 5) y’ = (-n) · x-n-1 |
6) y = ln x | 6) |
7) y = ax | 7) y’ = ax · loge a |
8) y = ex | 8) y’ = ex |
9) y = u · u | 9) y’ = u’ · u + u · u’ |
10) | 10) |
11) y = u + v | 11) y’ = u’ + v’ |
12) y = u − v | 12) y’ = u’ − v’ |
13) y = an | 13) y’ = an · ln a · n’ |
14) y = eu | 14) y’ = eu · u’ |
15) y = loge u | 15) |