Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 120

2.1.4 Wärmeübergänge

Оглавление

Das Wichtigste in Kürze: Die bei konstantem Volumen in Form von Wärme auf das System übertragene Energie ist gleich der Änderung seiner Inneren Energie. (a) Die quantitative Untersuchung von Wärmeübergängen bezeichnet man als Kalorimetrie. (b) Die Wärmekapazität bei konstantem Volumen ist die Steigung der Inneren Energie als Funktion der Temperatur.

Allgemein ist die Änderung der Inneren Energie eines Systems

(2.11)

wobei dwe (e für „extra“) die Arbeit mit Ausnahme der Volumenarbeit dwVol = p dV ist. Zum Beispiel kann dwe die elektrische Arbeit zur Erzeugung eines Stromflusses in einem Stromkreis (in einer galvanischen Kette) sein. Wird das Volumen eines Systems konstant gehalten, so kann es keine Volumenarbeit leisten, es gilt also dwVol = 0. Wenn das System auch sonst keine Arbeit verrichten kann (wie es zum Beispiel eine elektrochemische Zelle in Verbindung mit einem Motor könnte), ist auch dwe = 0. Dann gilt

(2.12a)

Wir schreiben hierfür dU = dqV, wobei der Index V eine Veränderung bei konstantem Volumen anzeigt. Für eine endliche Zustandsänderung gilt

(2.12b)

Wenn wir also die Wärmemenge messen, die einem System bei konstanten Volumen zugeführt (q > 0) oder aus dem System abgeführt (q < 0) wurde, messen wir in Wirklichkeit die Änderung seiner Inneren Energie.


Abb. 2.9 Bombenkalorimeter mit konstantem Volumen. „Bombe“ nennt man das innere Gefäß; es ist so konstruiert, dass es hohe Drücke aushalten kann. Die gesamte Anordnung nennt man Kalorimeter; seine Wärmekapazität muss bekannt sein oder ermittelt werden. Um eine adiabatische Arbeitsweise zu gewährleisten, kann man das Kalorimeter in ein Wasserbad stellen, dessen Temperatur während des Prozesses immer gleich der im Kalorimeter gehalten wird.

Physikalische Chemie

Подняться наверх