Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
William M. White
Geochemistry
Читать книгу Geochemistry - William M. White - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
155
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Geochemistry
Оглавление
Страница 1
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Geochemistry
Страница 8
Preface
About the companion website
Chapter 1 Introduction 1.1 INTRODUCTION
1.2 BEGINNINGS
1.3 GEOCHEMISTRY IN THE TWENTY-FIRST CENTURY
1.4 THE PHILOSOPHY OF SCIENCE
1.4.1 Building scientific understanding
1.4.2 The scientist as skeptic
1.5 ELEMENTS, ATOMS, CRYSTALS, AND CHEMICAL BONDS: SOME CHEMICAL FUNDAMENTALS 1.5.1 The periodic table
1.5.2 Electrons and orbits
1.5.3 Some chemical properties of the elements
1.5.4 Chemical bonding
1.5.4.1 Covalent, ionic, and metal bonds
1.5.4.2 Van der Waals interactions and hydrogen bonds
1.5.5 Molecules, crystals, and minerals
1.5.5.1 Molecules
1.5.5.2 Crystals
1.6 A BRIEF LOOK AT THE EARTH 1.6.1 Structure of the Earth
1.6.2 Plate tectonics and the hydrologic cycle
1.7 A LOOK AHEAD
REFERENCES AND SUGGESTIONS FOR FURTHER READING
NOTES
Chapter 2 Energy, entropy, and fundamental thermodynamic concepts 2.1 THE THERMODYNAMIC PERSPECTIVE
2.2 THERMODYNAMIC SYSTEMS AND EQUILIBRIUM
2.2.1 Fundamental thermodynamic variables
2.2.2 Properties of state
2.3 EQUATIONS OF STATE
2.3.1 Ideal gas law
2.3.2 Equations of state for real gases
2.3.2.1 Van der Waals equation
2.3.2.2 Other equations of state for gases
2.3.3 Equation of state for other substances
2.4 TEMPERATURE, ABSOLUTE ZERO, AND THE ZEROTH LAW OF THERMODYNAMICS
2.5 ENERGY AND THE FIRST LAW OF THERMODYNAMICS 2.5.1 Energy
2.5.2 Work
2.5.3 Path independence, exact differentials, state functions, and the first law
2.6 THE SECOND LAW AND ENTROPY 2.6.1 Statement
2.6.2 Statistical mechanics: a microscopic perspective of entropy
2.6.2.1 Microscopic interpretation of temperature
2.6.2.2 Entropy and volume
2.6.2.3 Summary
2.6.3 Integrating factors and exact differentials
Example 2.1
Entropy in reversible and irreversible reactions
2.7 ENTHALPY
Example 2.2
Measuring enthalpies of reaction
2.8 HEAT CAPACITY
2.8.1 Constant volume heat capacity
2.8.2 Constant pressure heat capacity
2.8.3 Energy associated with volume and the relationship between
C
v
and
C
p
2.8.4 Heat capacity of solids: a problem in quantum physics
2.8.4.1 The Boltzmann distribution law
2.8.4.2 The partition function
2.8.4.3 Energy distribution in solids
2.8.5 Relationship of entropy to other state variables
2.8.6 Additive nature of silicate heat capacities
2.9 THE THIRD LAW AND ABSOLUTE ENTROPY 2.9.1 Statement of the third law
2.9.2 Absolute entropy
Example 2.3
Configurational entropy
2.10 CALCULATING ENTHALPY AND ENTROPY CHANGES 2.10.1 Enthalpy changes due to changes in temperature and pressure
Example 2.4
Calculating isobaric enthalpy changes
2.10.2 Changes in enthalpy due to reactions and change of state
Example 2.5
Enthalpies (or heats) of reaction and Hess's law
2.10.3 Entropies of reaction
Example 2.6
Calculating enthalpy and entropy changes
2.11 FREE ENERGY
2.11.1 Helmholtz free energy
2.11.2 Gibbs free energy
2.11.2.1 Derivation
2.11.2.2 Gibbs free energy change in reactions
2.11.3 Criteria for equilibrium and spontaneity
2.11.4 Temperature and pressure dependence of the Gibbs free energy
Example 2.7
Using Gibbs free energy to predict equilibrium
Example 2.8
Predicting the equilibrium pressure of a mineral assemblage
Example 2.9
Volume and free energy changes for finite compressibility
2.12 THE MAXWELL RELATIONS*
2.13 SUMMARY
REFERENCES AND SUGGESTIONS FOR FURTHER READING
PROBLEMS
NOTES
Chapter 3 Solutions and thermodynamics of multicomponent systems 3.1 INTRODUCTION
3.2 PHASE EQUILIBRIA 3.2.1 Some definitions
3.2.1.1 Phase
3.2.1.2 Species
3.2.1.3 Component
3.2.1.4 Degrees of freedom
3.2.2 The Gibbs phase rule
3.2.3 The Clapeyron equation
Example 3.1
The graphite–diamond transition
3.3 SOLUTIONS
3.3.1 Raoult's law
3.3.2 Henry's law
3.4 CHEMICAL POTENTIAL 3.4.1 Partial molar quantities
3.4.2 Definition of chemical potential and relationship to Gibbs free energy
3.4.3 Properties of the chemical potential
3.4.4 The Gibbs–Duhem relation
3.4.5 Derivation of the phase rule
3.5 IDEAL SOLUTIONS
3.5.1 Chemical potential in ideal solutions
3.5.2 Volume, enthalpy, entropy, and free energy changes in ideal solutions
3.6 REAL SOLUTIONS
3.6.1 Chemical potential in real solutions
3.6.2 Fugacities
3.6.3 Activities and activity coefficients
Example 3.2
Using fugacity to calculate Gibbs free energy
3.6.4 Excess functions
Depression of the melting point
3.7 ELECTROLYTE SOLUTIONS
3.7.1 The nature of water and water–electrolyte interaction
3.7.2 Some definitions and conventions
3.7.2.1 Concentration units
3.7.2.2 pH
3.7.2.3 Standard state and other conventions
3.7.3 Activities in electrolytes
3.7.3.1 The Debye–Hückel and Davies equations
3.7.3.2 Limitations to the Debye–Hückel approach
Example 3.3
Calculating activities using the Debye–Hückel equation
3.8 IDEAL SOLUTIONS IN CRYSTALLINE SOLIDS AND THEIR ACTIVITIES
3.8.1 Mixing-on-site model
Example 3.4
Calculating activities using the mixing-on-site model
3.8.2 Local charge balance model
Example 3.5
Activities using the local charge balance model
3.9 EQUILIBRIUM CONSTANTS
3.9.1 Derivation and definition
3.9.2 Law of mass action
Example 3.6
Manipulating reactions and equilibrium constant expressions
3.9.2.1 Le Chatelier's principle
3.9.3 K
D
values, apparent equilibrium constants, and the solubility product
Example 3.7
Using the solubility product
3.9.4 Henry's law and gas solubilities
3.9.5 Temperature dependence of equilibrium constant
Example 3.8
Calculating equilibrium constants and equilibrium concentrations
3.9.6 Pressure dependence of equilibrium constant
3.10 PRACTICAL APPROACH TO ELECTROLYTE EQUILIBRIUM
3.10.1 Choosing components and species
3.10.2 Mass balance
Example 3.9
Soil organic acid
3.10.3 Electrical neutrality
Example 3.10
Determining the pH of rainwater from its composition
3.10.4 Equilibrium constant expressions
3.11 OXIDATION AND REDUCTION
3.11.1 Redox in aqueous solutions
3.11.1.1 Hydrogen scale potential, EH
Example 3.11
Calculating the
EH
of net reactions
3.11.1.2 Alternative representation of redox state: pε
3.11.1.3 pε–pH diagrams
Balancing redox reactions for pε–pH diagrams
3.11.2 Redox in magmatic systems
3.12 SUMMARY
REFERENCES AND SUGGESTIONS FOR FURTHER READING
PROBLEMS
NOTES
{buyButton}
Подняться наверх