Читать книгу DIVI Jahrbuch 2021/2022 - Группа авторов - Страница 53
Literatur
Оглавление1. Cleophas TJ, Zwinderman AH: Machine Learning in Medicine – a Complete Overview. ISBN 978-3-319-15195-3 Springer 2015
2. Robba C, Battaglini D, Ball L, Patroniti N, Loconte M, Brunetti I, Vena A, Giacobbe DR, Bassetti M, Rocco PRM, Pelosi P. Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir Physiol Neurobiol 2020; 279:103455
3. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, Aldecoa C, Martínez-Pallí G, Martínez-González MA, Slutsky AS, Villar J; COVID-19 Spanish ICU Network. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med 2020;46(12):2200–2211
4. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med 2021; 47(1):60–73
5. Moezzi M, Shirbandi K, Shahvandi HK et al. The diagnostic accuracy of Artificial Intelligence-Assisted CT imaging in COVID-19 disease: A systematic review and meta-analysis. Inform Med Unlocked 2021; 24:100591-100591
6. Telemedizin in der Intensivmedizin. S1 Leitlinie der DGAI (001–034). https://www.awmf.org/uploads/tx_szleitlinien/001-034l_S1_Telemedizin_in-der-Intensivmedizin_2021-01_1.pdf