Читать книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов - Страница 66

References

Оглавление

1 Abadin, H., Ashizawa, A., Stevens, Y.W., Llados, F., Diamond, G., Sage, G., Citra, M., Quinones, A., Bosch, S.J., and Swarts, S.G. (2007). Toxicological Profile for Lead. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

2 Aleckovic, M. and Kang, Y. (2015). Regulation of cancer metastasis by cell-free miRNAs. Biochim. Biophys. Acta 1855: 24–42.

3 Alli, L.A. (2015). Blood level of cadmium and lead in occupationally exposed persons in Gwagwalada, Abuja, Nigeria. Interdiscip. Toxicol. 8: 146–150.

4 Amini, P., Ettlin, J., Opitz, L., Clementi, E., Malbon, A., and Markkanen, E. (2017). An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Mol. Biol. 18: 22.

5 Amrani, I., Haddam, N., Garat, A., Allorge, D., Zerimech, F., Schraen, S., Taleb, A., Merzouk, H., Edme, J.L., and Lo-Guidice, J.M. (2020). Exposure to metal fumes and circulating miRNAs in Algerian welders. Int. Arch. Occup. Environ. Health 93: 553–561.

6 Armstrong, C.W., Stroube, R.B., Rubio, T., Siudyla, E.A., and Miller, G.B. Jr. (1984). Outbreak of fatal arsenic poisoning caused by contaminated drinking water. Arch. Environ. Health 39: 276–279.

7 Aryani, A. and Denecke, B. (2015). In vitro application of ribonucleases: Comparison of the effects on mRNA and miRNA stability. BMC Res. Notes 8: 164.

8 ATSDR. 2019. ATSDR’s Substance Priority List [Online]. ATSDR. https://www.atsdr.cdc.gov/spl/index.html (accessed June 21, 2021).

9 Ayotte, J.D., Medalie, L., Qi, S.L., Backer, L.C., and Nolan, B.T. (2017). Estimating the high-arsenic domestic-well population in the conterminous United States. Environ. Sci. Technol. 51: 12443–12454.

10 Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., and Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 12: 643972.

11 Banerjee, N., Bandyopadhyay, A.K., Dutta, S., Das, J.K., Roy Chowdhury, T., Bandyopadhyay, A., and Giri, A.K. (2017). Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals. Toxicology 378: 10–16.

12 Banerjee, N., Das, S., Tripathy, S., Bandyopadhyay, A.K., Sarma, N., Bandyopadhyay, A., and Giri, A.K. (2019). MicroRNAs play an important role in contributing to arsenic susceptibility in the chronically exposed individuals of West Bengal, India. Environ. Sci. Pollut. Res. Int. 26: 28052–28061.

13 Barcelo, M., Castells, M., Bassas, L., Vigues, F., and Larriba, S. (2019). Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci. Rep. 9: 13772.

14 Beck, R., Bommarito, P., Douillet, C., Kanke, M., Del Razo, L.M., Garcia-Vargas, G., Fry, R.C., Sethupathy, P., and Styblo, M. (2018). Circulating miRNAs associated with arsenic exposure. Environ. Sci. Technol. 52: 14487–14495.

15 Bernhoft, R.A. (2013). Cadmium toxicity and treatment. Sci. World J. 7: 394652.

16 Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., Pegoraro, V., Motta, V., Tarantini, L., Cantone, L., Schwartz, J., Bertazzi, P.A., and Baccarelli, A. (2010). Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118: 763–768.

17 Bonneau, E., Neveu, B., Kostantin, E., Tsongalis, G.J., and Guire, D.E. (2019). How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30: 114–127.

18 Califf, R.M. (2018). Biomarker definitions and their applications. Exp. Biol. Med. (Maywood) 243: 213–221.

19 Cardenas-Gonzalez, M., Osorio-Yanez, C., Gaspar-Ramirez, O., Pavkovic, M., Ochoa-Martinez, A., Lopez-Ventura, D., Medeiros, M., Barbier, O.C., Perez-Maldonado, I.N., Sabbisetti, V.S., Bonventre, J.V., and Vaidya, V.S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 150: 653–662.

20 CDC. (2012). Response to Advisory Commitee on Childhood Lead Poisoning Prevention recommendations in Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. https://www.cdc.gov/nceh/lead/acclpp/cdc_response_lead_exposure_recs.pdf.

21 Chen, J., Lai, W., Deng, Y., Liu, M., Dong, M., Liu, Z., Wang, T., Li, X., Zhao, Z., Yin, X., Yang, J., Yu, R., and Liu, L. (2021). MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol. Lett. 345: 12–23.

22 Cheng, H., Hu, P., Wen, W., and Liu, L. (2018). Relative miRNA and mRNA expression involved in arsenic methylation. PLoS One 13: e0209014.

23 Cheng, H.H., Yi, H.S., Kim, Y., Kroh, E.M., Chien, J.W., Eaton, K.D., Goodman, M.T., Tait, J.F., Tewari, M., and Pritchard, C.C. (2013). Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 8: e64795.

24 Clarkson, T.W. and Magos, L. (2006). The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609–662.

25 Cohen, S.M., Arnold, L.L., Beck, B.D., Lewis, A.S., and Eldan, M. (2013). Evaluation of the carcinogenicity of inorganic arsenic. Crit. Rev. Toxicol. 43: 711–752.

26 Collares, C.V., Evangelista, A.F., Xavier, D.J., Rassi, D.M., Arns, T., Foss-Freitas, M.C., Foss, M.C., Puthier, D., Sakamoto-Hojo, E.T., Passos, G.A., and Donadi, E.A. (2013). Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res. Notes 6: 491.

27 Correia, C.N., Nalpas, N.C., Mcloughlin, K.E., Browne, J.A., Gordon, S.V., Machugh, D.E., and Shaughnessy, R.G. (2017). Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol. 8: 118.

28 Cory-Slechta, D.A. (2005). Studying toxicants as single chemicals: Does this strategy adequately identify neurotoxic risk? Neurotoxicology 26: 491–510.

29 Cubadda, F., Jackson, B.P., Cottingham, K.L., Van Horne, Y.O., and Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 579: 1228–1239.

30 Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R., and Zhang, X. (2019). Circulating microRNAs in cancer: Potential and challenge. Front Genet. 10: 626.

31 de Araujo, M.L., Gomes, B.C., Devoz, P.P., Duarte, N.A.A., Ribeiro, D.L., De Araujo, A.L., Batista, B.L., Antunes, L.M.G., Barbosa, F., JR., Rodrigues, A.S., Rueff, J., and Barcelos, G.R.M. (2021). Association between miR-148a and DNA methylation profile in individuals exposed to lead (Pb). Front Genet. 12: 620744.

32 De Guire, V., Robitaille, R., Tetreault, N., Guerin, R., Menard, C., Bambace, N., and Sapieha, P. (2013). Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin. Biochem. 46: 846–860.

33 Deng, Q., Dai, X., Feng, W., Huang, S., Yuan, Y., Xiao, Y., Zhang, Z., Deng, N., Deng, H., Zhang, X., Kuang, D., Li, X., Zhang, W., Zhang, X., Guo, H., and Wu, T. (2019). Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ. Int. 122: 369–380.

34 Ding, E., Guo, J., Bai, Y., Zhang, H., Liu, X., Cai, W., Zhong, L., and Zhu, B. (2017). MiR-92a and miR-486 are potential diagnostic biomarkers for mercury poisoning and jointly sustain NF-kappaB activity in mercury toxicity. Sci. Rep. 7: 15980.

35 Ding, E., Zhao, Q., Bai, Y., Xu, M., Pan, L., Liu, Q., Wang, B., Song, X., Wang, J., Chen, L., and Zhu, B. (2016). Plasma microRNAs expression profile in female workers occupationally exposed to mercury. J. Thorac. Dis. 8: 833–841.

36 Dioni, L., Sucato, S., Motta, V., Iodice, S., Angelici, L., Favero, C., Cavalleri, T., Vigna, L., Albetti, B., Fustinoni, S., Bertazzi, P., Pesatori, A., and Bollati, V. (2017). Urinary chromium is associated with changes in leukocyte miRNA expression in obese subjects. Eur. J. Clin. Nutr. 71: 142–148.

37 Ebert, M.S. and Sharp, P.A. (2012). Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524.

38 Fabbri, M. (2018). MicroRNAs and miRceptors: A new mechanism of action for intercellular communication. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373 (1737): 20160486.

39 Fabian, M.R. and Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat. Struct. Mol. Biol. 19: 586–593.

40 Faraldi, M., Gomarasca, M., Sansoni, V., Perego, S., Banfi, G., and Lombardi, G. (2019). Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 9: 1584.

41 Farina, N.H., Wood, M.E., Perrapato, S.D., Francklyn, C.S., Stein, G.S., Stein, J.L., and Lian, J.B. (2014). Standardizing analysis of circulating microRNA: Clinical and biological relevance. J. Cell. Biochem. 115: 805–811.

42 Feng, Y.H. and Tsao, C.J. (2016). Emerging role of microRNA-21 in cancer. Biomed. Rep. 5: 395–402.

43 Ferrari, E. and Gandellini, P. (2020). Unveiling the ups and downs of miR-205 in physiology and cancer: Transcriptional and post-transcriptional mechanisms. Cell Death Dis. 11: 980.

44 Fowler, B.A., Alexander, J., and Oskarsson, A. (2015). Toxic metals in food. Ch. 6 in Handbook on the Toxicology of Metals, 4th edn., G.F. Nordberg, B.A. Fowler, and M. Nordberg eds., San Diego: Academic Press.

45 Friberg, L. (1983). Cadmium. Annu. Rev. Public Health 4: 367–373.

46 Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92–105.

47 Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., and Catalano, A. (2020). The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17 (11): 3782.

48 Gil, F. and Pla, A. (2001). Biomarkers as biological indicators of xenobiotic exposure. J. Appl. Toxicol. 21: 245–255.

49 Gonzalez, H., Lema, C., Kirken, R.A., Maldonado, R.A., Varela-Ramirez, A., and Aguilera, R.J. (2015). Arsenic-exposed keratinocytes exhibit differential microRNAs expression profile: Potential implication of miR-21, miR-200a and miR-141 in melanoma pathway. Clin. Cancer Drugs 2: 138–147.

50 Goyal, T., Mitra, P., Singh, P., Ghosh, R., Sharma, S., and Sharma, P. (2021). Association of microRNA expression with changes in immune markers in workers with cadmium exposure. Chemosphere 274: 129615.

51 Ha, M. and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15: 509–524.

52 Hackenmueller, S.A., Gherasim, C., Walden, J.Q., Law, C.L., and Strathmann, F.G. (2019). Unrecognized elevations of toxic elements in urine and blood highlight the potential need for a broader approach to exposure assessment. J. Anal Toxicol. 43: 284–290.

53 Hammond, S.M. (2015). An overview of microRNAs. Adv. Drug Deliv. Rev. 87: 3–14.

54 Heneghan, H.M., Miller, N., and Kerin, M.J. (2010). MiRNAs as biomarkers and therapeutic targets in cancer. Curr. Opin. Pharmacol. 10: 543–550.

55 Holmes, P., James, K.A., and Levy, L.S. (2009). Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 408: 171–182.

56 Hughes, M.F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 133: 1–16.

57 Hunt, K.M., Srivastava, R.K., Elmets, C.A., and Athar, M. (2014). The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Lett. 354: 211–219.

58 IARC. (1980). Some metals and metallic compounds. IARC Monogr. Eval. Carcinog Risk Chem Hum 23: 1–415.

59 IARC. (1990). Chromium, Nickel and Welding. Lyon: WHO.

60 IARC. (2012). Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100: 11–465.

61 Iorio, M.V. and Croce, C.M. (2012). MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO. Mol. Med. 4: 143–159.

62 Jarup, L. (2003). Hazards of heavy metal contamination. Br. Med. Bull. 68: 167–182.

63 Jarup, L. and Akesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 238: 201–208.

64 Jia, J., Li, T., Yao, C., Chen, J., Feng, L., Jiang, Z., Shi, L., Liu, J., Chen, J., and Lou, J. (2020). Circulating differential miRNAs profiling and expression in hexavalent chromium exposed electroplating workers. Chemosphere 260: 127546.

65 Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., and Korrick, S. (2012). Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 120: 799–806.

66 Karvinen, S., Sievanen, T., Karppinen, J.E., Hautasaari, P., Bart, G., Samoylenko, A., Vainio, S.J., Ahtiainen, J.P., Laakkonen, E.K., and Kujala, U.M. (2020). MicroRNAs in extracellular vesicles in sweat change in response to endurance exercise. Front Physiol. 11: 676.

67 Klaassen, C.D. (2013). Toxicology the Basic Science of Poisons. New York: Mc Graw Hill.

68 Kobayashi, E., Suwazono, Y., Uetani, M., Kido, T., Nishijo, M., Nakagawa, H., and Nogawa, K. (2006). Tolerable level of lifetime cadmium intake estimated as a benchmark dose low, based on excretion of beta2-microglobulin in the cadmium-polluted regions of the Kakehashi River Basin, Japan. Bull Environ. Contam. Toxicol. 76: 8–15.

69 Kong, A.P., Xiao, K., Choi, K.C., Wang, G., Chan, M.H., Ho, C.S., Chan, I., Wong, C.K., Chan, J.C., and Szeto, C.C. (2012). Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin. Chim. Acta 413: 1053–1057.

70 Kotorashvili, A., Ramnauth, A., Liu, C., Lin, J., Ye, K., Kim, R., Hazan, R., Rohan, T., Fineberg, S., and Loudig, O. (2012). Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One 7: e34683.

71 Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11: 597–610.

72 Lawrie, C.H., Gal, S., Dunlop, H.M., Pushkaran, B., Liggins, A.P., Pulford, K., Banham, A.H., Pezzella, F., Boultwood, J., Wainscoat, J.S., Hatton, C.S., and Harris, A.L. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141: 672–675.

73 Lei, L.J., Zhang, Z., Guo, J.Y., Shi, X.J., Zhang, G.Y., Kang, H., Gao, Y.Y., Hu, X.Q., Wang, T., and Mu, L.N. (2019). MiR-21 as a potential biomarker for renal dysfunction induced by cadmium exposure. Int. J. Clin. Exp. Med. 12: 1631–1639.

74 Li, X., Shi, Y., Wei, Y., Ma, X., Li, Y., and Li, R. (2012). Altered expression profiles of microRNAs upon arsenic exposure of human umbilical vein endothelial cells. Environ. Toxicol. Pharmacol. 34: 381–387.

75 Li, Y., Li, P., Yu, S., Zhang, J., Wang, T., and Jia, G. (2014). miR-3940-5p associated with genetic damage in workers exposed to hexavalent chromium. Toxicol. Lett. 229: 319–326.

76 Li, Y., Ye, F., Wang, A., Wang, D., Yang, B., Zheng, Q., Sun, G., and Gao, X. (2016). Chronic arsenic poisoning probably caused by arsenic-based pesticides: Findings from an investigation study of a household. Int. J. Environ. Res. Public Health 13 (1): 133.

77 Libri, V., Miesen, P., Rij, V.A.N.R.P, and Buck, A.H. (2013). Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell. Mol. Life Sci. 70: 3525–3544.

78 Liu, J.Q., Niu, Q., Hu, Y.H., Li, Y., Wang, H.X., Xu, S.Z., Ding, Y.S., Li, S.G., and Ma, R.L. (2018). The bidirectional effects of arsenic on miRNA-21: A systematic review and meta-analysis. Biomed. Environ. Sci. 31: 654–666.

79 Manning, F.C., Blankenship, L.J., Wise, J.P., Xu, J., Bridgewater, L.C., and Patierno, S.R. (1994). Induction of internucleosomal DNA fragmentation by carcinogenic chromate: Relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis. Environ. Health Perspect. 102 (Suppl 3): 159–167.

80 Mariner, P.D., Korst, A., Karimpour-Fard, A., Stauffer, B.L., Miyamoto, S.D., and Sucharov, C.C. (2018). Improved detection of circulating miRNAs in serum and plasma following rapid heat/freeze cycling. Microrna 7: 138–147.

81 Michailidi, C., Hayashi, M., Datta, S., Sen, T., Zenner, K., Oladeru, O., Brait, M., Izumchenko, E., Baras, A., Vandenbussche, C., Argos, M., Bivalacqua, T.J., Ahsan, H., Hahn, N.M., Netto, G.J., Sidransky, D., and Hoque, M.O. (2015). Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use. Cancer Prev. Res. (Phila) 8: 208–221.

82 Michlewski, G. and Caceres, J.F. (2019). Post-transcriptional control of miRNA biogenesis. RNA 25: 1–16.

83 Mitra, P., Goyal, T., Singh, P., Sharma, S., and Sharma, P. (2021). Assessment of circulating miR-20b, miR-221, and miR-155 in occupationally lead-exposed workers of North-Western India. Environ. Sci. Pollut. Res. Int. 28: 3172–3181.

84 Mori, M.A., Ludwig, R.G., Garcia-Martin, R., Brandao, B.B., and Kahn, C.R. (2019). Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metab. 30: 656–673.

85 Motta, V., Angelici, L., Nordio, F., Bollati, V., Fossati, S., Frascati, F., Tinaglia, V., Bertazzi, P.A., Battaglia, C., and Baccarelli, A.A. (2013). Integrative analysis of miRNA and inflammatory gene expression after acute particulate matter exposure. Toxicol. Sci. 132: 307–316.

86 Naranmandura, H., Suzuki, N., and Suzuki, K.T. (2006). Trivalent arsenicals are bound to proteins during reductive methylation. Chem. Res. Toxicol. 19: 1010–1018.

87 Nath, K., Singh, D., Shyam, S., and Sharma, Y.K. (2009). Phytotoxic effects of chromium and tannery effluent on growth and metabolism of Phaseolus mungo Roxb. J. Environ. Biol. 30: 227–234.

88 Newman-Taylor, A. (1998). Cadmium. In Environmental and Occupational Medicine, W.N. Rom ed., Philadelphia, PA: Lippincott-Raven.

89 Noonan, C.W., Sarasua, S.M., Campagna, D., Kathman, S.J., Lybarger, J.A., and Mueller, P.W. (2002). Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ. Health Perspect. 110: 151–155.

90 O’Brien, T.J., Ceryak, S., and Patierno, S.R. (2003). Complexities of chromium carcinogenesis: Role of cellular response, repair and recovery mechanisms. Mutat. Res. 533: 3–36.

91 Ochoa-Martinez, A.C., Araiza-Gamboa, Y., Varela-Silva, J.A., Orta-Garcia, S.T., Carrizales-Yanez, L., and Perez-Maldonado, I.N. (2021). Effect of gene-environment interaction (arsenic exposure: PON1 Q192R polymorphism) on cardiovascular disease biomarkers in Mexican population. Environ. Toxicol. Pharmacol. 81: 103519.

92 Odame, E., Chen, Y., Zheng, S., Dai, D., Kyei, B., Zhan, S., Cao, J., Guo, J., Zhong, T., Wang, L., Li, L., and Zhang, H. (2021). Enhancer RNAs: Transcriptional regulators and workmates of NamiRNAs in myogenesis. Cell. Mol. Biol. Lett. 26: 4.

93 Olsson, I.M., Bensryd, I., Lundh, T., Ottosson, H., Skerfving, S., and Oskarsson, A. (2002). Cadmium in blood and urine: Impact of sex, age, dietary intake, iron status, and former smoking: Association of renal effects. Environ. Health Perspect. 110: 1185–1190.

94 Pechova, A. and Pavlata, L. (2007). Chromium as an essential nutrient: A review. Vet Med (Praha) 52: 1–18.

95 Perez-Vazquez, M.S., Ochoa-Martinez, A.C., Ruiz-Vera, T., Araiza-Gamboa, Y., and Perez-Maldonado, I.N. (2017). Evaluation of epigenetic alterations (miR-126 and miR-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. Environ. Sci. Pollut. Res. Int. 24: 28036–28045.

96 Podgorski, J. and Berg, M. (2020). Global threat of arsenic in groundwater. Science 368: 845–850.

97 Proctor, D.M., Suh, M., Campleman, S.L., and Thompson, C.M. (2014). Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology 325: 160–179.

98 Rager, J.E., Bailey, K.A., Smeester, L., Miller, S.K., Parker, J.S., Laine, J.E., Drobna, Z., Currier, J., Douillet, C., Olshan, A.F., Rubio-Andrade, M., Styblo, M., Garcia-Vargas, G., and Fry, R.C. (2014). Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ. Mol. Mutagen. 55: 196–208.

99 Rahman, M.M., Chowdhury, U.K., Mukherjee, S.C., Mondal, B.K., Paul, K., Lodh, D., Biswas, B.K., Chanda, C.R., Basu, G.K., Saha, K.C., Roy, S., Das, R., Palit, S.K., Quamruzzaman, Q., and Chakraborti, D. (2001). Chronic arsenic toxicity in Bangladesh and West Bengal, India: A review and commentary. J. Toxicol. Clin. Toxicol. 39: 683–700.

100 Rajkumar, V. and Gupta, V. (2021). Heavy Metal Toxicity. Treasure Island, FL: StatPearls Publishing LLP. https://www.ncbi.nlm.nih.gov/books/NBK560920

101 Ratnaike, R.N. (2003). Acute and chronic arsenic toxicity. Postgrad. Med. J. 79: 391–396.

102 Rehman, K., Fatima, F., Waheed, I., and Akash, M.S.H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 119: 157–184.

103 Risher, J.F., Nickle, R.A., and Amler, S.N. (2003). Elemental mercury poisoning in occupational and residential settings. Int. J. Hyg. Environ. Health 206: 371–379.

104 Rubio, M., Bustamante, M., Hernandez-Ferrer, C., Fernandez-Orth, D., Pantano, L., Sarria, Y., Pique-Borras, M., Vellve, K., Agramunt, S., Carreras, R., Estivill, X., Gonzalez, J.R., and Mayor, A. (2018). Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One 13: e0193527.

105 Ruiz-Vera, T., Ochoa-Martinez, A.C., Zarazua, S., Carrizales-Yanez, L., and Perez-Maldonado, I.N. (2019). Circulating miRNA-126, -145 and -155 levels in Mexican women exposed to inorganic arsenic via drinking water. Environ. Toxicol. Pharmacol. 67: 79–86.

106 Saliminejad, K., Khorshid, K.H.O.R.R.A.M., Soleymani Fard, H.R., and Ghaffari, S.H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 234: 5451–5465.

107 Salnikow, K. and Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chem. Res. Toxicol. 21: 28–44.

108 Setti, G., Pezzi, M.E., Viani, M.V., Pertinhez, T.A., Cassi, D., Magnoni, C., Bellini, P., Musolino, A., Vescovi, P., and Meleti, M. (2020). Salivary microRNA for diagnosis of cancer and systemic diseases: A systematic review. Int. J. Mol. Sci. 21 (3): 907.

109 Sperling, M. (2005). Chromium. In Encyclopedia of Analytical Science, 2nd edn., P. Worsfold, A. Townshend, and C. Poole, eds., Oxford: Elsevier.

110 States, J.C. (2015). Arsenic: Exposure Sources, Health Risks, and Mechanisms of Toxicity. Hoboken, NJ: John Wiley & Sons.

111 Straif, K., Benbrahim-Tallaa, L., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F., Bouvard, V., Guha, N., Freeman, C., Galichet, L., Cogliano, V., and the WHO International Agency for Research on Cancer Monograph Working Group. (2009). A review of human carcinogens. Part C: Metals, arsenic, dusts, and fibres. Lancet Oncol. 10: 453–454.

112 Strimbu, K. and Tavel, J.A. (2010). What are biomarkers? Curr. Opin. HIV AIDS 5: 463–466.

113 Sudha, S., Kripa, S.K., Shibily, P., and Shyn, J. (2011). Elevated frequencies of micronuclei and other nuclear abnormalities of chrome plating workers occupationally exposed to hexavalent chromium. Iran J. Cancer Prev. 4: 119–124.

114 Sun, B., Xue, J., Li, J., Luo, F., Chen, X., Liu, Y., Wang, Q., Qi, C., Zou, Z., Zhang, A., and Liu, Q. (2017). Circulating miRNAs and their target genes associated with arsenism caused by coal-burning. Toxicol. Res. (Camb) 6: 162–172.

115 Tam, L.M., Price, N.E., and Wang, Y. (2020). Molecular mechanisms of arsenic-induced disruption of DNA repair. Chem. Res. Toxicol. 33: 709–726.

116 Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., and Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 18: 149–175.

117 Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., and Sutton, D.J. (2012). Heavy metal toxicity and the environment. Exp. Suppl. 101: 133–164.

118 Thomas, D.J. (2015). The chemistry and metabolism of arsenic. In Arsenic: Exposure Sources, Health Risks and Mechanisms of Toxicity, J.C. States, ed., New York: Wiley.

119 Tiberio, P., Callari, M., Angeloni, V., Daidone, M.G., and Appierto, V. (2015). Challenges in using circulating miRNAs as cancer biomarkers. Biomed. Res. Int. 2015: 731479.

120 Tokar, E.J., Boyd, W.A., Freedman, J.H., and Waalkes, M.P. (2013). Toxic effects of metals. In Casarett and Doull’s Toxicology: The Basic Science of Poisons, (8th edn.), edited by C. D. Klaassen. New York: McGraw Hill.

121 Tsuji, J.S., Chang, E.T., Gentry, P.R., Clewell, H.J., Boffetta, P., and Cohen, S.M. (2019). Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: The scientific basis for use of a threshold approach. Crit. Rev. Toxicol. 49: 36–84.

122 USEPA. (1998). Toxicological Review of Hexavalent Chromium: Cas. No. 18540-29-9. Washington, DC: US Environmental Protection Agency.

123 Vasudevan, S., Tong, Y., and Steitz, J.A. (2007). Switching from repression to activation: MicroRNAs can up-regulate translation. Science 318: 1931–1934.

124 Wah Chu, K. and Chow, K.L. (2002). Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 61: 53–64.

125 Wang, L., Qiu, J.G., He, J., Liu, W.J., Ge, X., Zhou, F.M., Huang, Y.X., Jiang, B.H., and Liu, L.Z. (2019). Suppression of miR-143 contributes to overexpression of IL-6, HIF-1alpha and NF-kappaB p65 in Cr(VI)-induced human exposure and tumor growth. Toxicol. Appl. Pharmacol. 378: 114603.

126 Wang, Y., Su, H., Gu, Y., Song, X., and Zhao, J. (2017). Carcinogenicity of chromium and chemoprevention: A brief update. Onco. Targets Ther. 10: 4065–4079.

127 Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H., Lee, M.J., Galas, D.J., and Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clin. Chem. 56: 1733–1741.

128 WHO. (1993). Evaluation of certain food additives and contaminants: Forty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ. Tech. Rep. Ser. 837: 1–53.

129 WHO. (2018). Arsenic [Online]. https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed May 30 2021).

130 Wimmer, I., Troscher, A.R., Brunner, F., Rubino, S.J., Bien, C.G., Weiner, H.L., Lassmann, H., and Bauer, J. (2018). Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples. Sci. Rep. 8: 6351.

131 Wise, J.P., Sr., Wise, S.S., and Little, J.E. (2002). The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat. Res. 517: 221–229.

132 Xu, M., Yu, Z., Hu, F., Zhang, H., Zhong, L., Han, L., An, Y., Zhu, B., and Zhang, H. (2017). Identification of differential plasma miRNA profiles in Chinese workers with occupational lead exposure. Biosci. Rep. 37.

133 Xu, Y., Zou, Z., Liu, Y., Wang, Q., Sun, B., Zeng, Q., Liu, Q., and Zhang, A. (2020). miR-191 is involved in renal dysfunction in arsenic-exposed populations by regulating inflammatory response caused by arsenic from burning arsenic-contaminated coal. Hum Exp Toxicol 39: 37–46.

134 Yang, L., Zhang, Y., Wang, F., Luo, Z., Guo, S., and Strahle, U. (2020). Toxicity of mercury: Molecular evidence. Chemosphere 245: 125586.

135 Young, J.L., Yan, X., Xu, J., Yin, X., Zhang, X., Arteel, G.E., Barnes, G.N., States, J.C., Watson, W.H., Kong, M., Cai, L., and Freedman, J.H. (2019). Cadmium and high-fat diet disrupt renal, cardiac and hepatic essential metals. Sci. Rep. 9: 14675.

136 Yuan, W., Liu, L., Liang, L., Huang, K., Deng, Y., Dong, M., Chen, J., Wang, G., and Zou, F. (2020). MiR-122-5p and miR-326-3p: Potential novel biomarkers for early detection of cadmium exposure. Gene 724: 144156.

137 Zampetaki, A., Albrecht, A., and Steinhofel, K. (2018). Long non-coding RNA structure and function: Is there a link? Front Physiol. 9: 1201.

138 Zeng, Q., Zou, Z., Wang, Q., Sun, B., Liu, Y., Liang, B., Liu, Q., and Zhang, A. (2019). Association and risk of five miRNAs with arsenic-induced multiorgan damage. Sci. Total Environ. 680: 1–9.

139 Zenobia, C. and Hajishengallis, G. (2015). Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000, 69: 142–159.

140 Zhang, L., Gao, Y., Wu, S., Zhang, S., Smith, K.R., Yao, X., and Gao, H. (2020). Global impact of atmospheric arsenic on health risk: 2005 to 2015. Proc. Natl. Acad. Sci. USA 117: 13975–13982.

141 Zheng, L., Jiang, Y.L., Fei, J., Cao, P., Zhang, C., Xie, G.F., Wang, L.X., Cao, W., Fu, L., and Zhao, H. (2021). Circulatory cadmium positively correlates with epithelial-mesenchymal transition in patients with chronic obstructive pulmonary disease. Ecotoxicol. Environ. Saf. 215: 112164.

142 Zhou, Q. and Xi, S. (2018). A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul. Toxicol. Pharmacol. 99: 78–88.

Genomic and Epigenomic Biomarkers of Toxicology and Disease

Подняться наверх