Читать книгу Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie - James J. Keeler - Страница 25

Schwerere Aufgaben

Оглавление

S2.1.1 Nach dem Gleichverteilungssatz (siehe „Toolkit 7: Der Gleichverteilungssatz“ in Abschn. 2.1 des Lehrbuchs) ist die molare Innere Energie durch


gegeben, wobei vT, vR und vS die Anzahl der Translations-, Rotations- bzw. der Schwingungsfreiheitsgrade des betrachteten Moleküls ist. Jedes der Gasmoleküle kann sich unabhängig in x-, y- und z-Richtung durch den Raum bewegen, daher besitzt es drei Translationsfreiheitsgrade. Kohlendioxid ist ein lineares Molekül, und es besitzt daher zwei Rotationsfreiheitsgrade. Bei Raumtemperatur ist es unwahrscheinlich, dass eine der Schwingungsmoden dieses Moleküls angeregt ist, daher fließen sie nicht in die Berechnung ein (vS = 0). Für die molare Innere Energie ergibt sich


S2.1.3 Die benötigte Definition der Arbeit ist durch Gl. (2.4) gegeben, dw = −|F|dz. Integration auf beiden Seiten der Gleichung liefert


Beachten Sie, dass sich der zweite Term aus dem Verhalten des Elastomers gemäß dem Hooke’schen Gesetz ergibt, wodurch sich der Betrag der insgesamt verrichteten Arbeit reduziert.

S2.1.5

1 (a) Der natürliche Logarithmus lässt sich mithilfe einer Taylor-Reihe entwickeln,Für v ≪ 1 ergibt sich damit näherungsweise ln(1 + v) ≈ v bzw. ln(1 − v) ≈ − v. Daher giltWegen u = n/N folgt

2 (b) Das Hooke’sche Gesetz sagt den Zusammenhang F = Konstante × x voraus; dies bedeutet, dass die Rückstellkraft direkt proportional zur Auslenkung ist. Mithilfe der Beziehung n = x/l können wir für den Ausdruck für die Kraft aus Teilaufgabe (a) auch schreiben:Wir sehen, dass das Hooke’sche Gesetz erfüllt ist, und dass kT/Nl2 eine Kraftkonstante ist.

S2.1.7 Die Van-der-Waals-Gleichung ist durch Gl. (1.27b) gegeben,


und für die Volumenarbeit gilt laut Gl. (2.6) dw = −pexdV. Bei einer reversiblen Expansion entspricht der äußere Druck pex stets dem Druck des Gases, also gilt


Integration auf beiden Seiten dieser Gleichung liefert


Im Folgenden berechnen wir die verrichtete Arbeit während einer isothermen reversiblen Expansion für die drei in der Aufgabenstellung genannten Fälle; die resultierenden Indikatordiagramme sind in Abb 2.1 gemeinsam in einer Darstellung gezeigt.

1 (a) Für ein ideales Gas ergibt sich

2 (b) Schließlich betrachten wir ein Van-der-Waals-Gas, in dem die abstoßenden Kräfte überwiegen. Einsetzen der gegebenen Werte a = 0 und b = 5,11 × 10−2 dm3 mol−1 in den zuvor hergeleiteten, allgemeinen Ausdruck liefertAbb. 2.1

3 (c) Schließlich betrachten wir ein Van-der-Waals-Gas, in dem die anziehenden Kräfte überwiegen. Wir setzen die gegebenen Werte in den zuvor hergeleiteten, allgemeinen Ausdruck ein; hierzu drücken wir die Van-der-Waals-Konstante a in SI-Einheiten aus:

S2.1.9

1 (a) Die Virialgleichung ist durch Gl. (1.25b) gegeben. Die ersten drei Terme lautenEinsetzen von Vm = V / n liefertFolglich ist die verrichtete ArbeitFür n = 1 mol istNach Tab. 1.4 des Lehrbuchs ist B = − 21,7 cm3 mol−1, und aus der Aufgabenstellung ergibt sich C = 1,2 X 103 cm6 mol−2. Damit folgtWir erhalten daher mit Gl. (2.9)

2 (b) Ein ideales Gas entspricht dem ersten Term in der Reihenentwicklung von p. Mit Gl. (2.9) folgt

Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie

Подняться наверх