Читать книгу Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie - James J. Keeler - Страница 41

3.1 Die Entropie Diskussionsfragen

Оглавление

D3.1.1 Der Zweite Hauptsatz besagt nur, dass die Gesamtentropie von System (d. h. der Moleküle in den Zellen) und Umgebung (also dem Medium um das System herum) in einem freiwillig ablaufenden Prozess zunehmen muss. Er sagt nicht, dass die Entropie in einem Teil des Universums zunehmen muss, der mit seiner Umgebung in Wechselwirkung steht. Im vorliegenden Fall wachsen die Zellen, indem sie ihrer Umgebung (dem Medium) chemische Energie entnehmen; bei diesem Prozess überwiegt die Zunahme der Entropie im Medium die Abnahme der Entropie im System. Damit ist der Zweite Hauptsatz nicht verletzt.

D3.1.3 In Abschn. 3.1.1 des Lehrbuchs finden Sie eine ausführliche Diskussion der Beziehungen zwischen den unterschiedlichen Formulierungen des Zweiten Hauptsatzes der Thermodynamik. Wir wollen hier eine kurze Zusammenfassung geben. Die beiden wichtigsten Formulierungen des Zweiten Hauptsatz treffen äquivalente Aussagen, die auf direkten Beobachtungen beruhen:

1 (a) Formulierung von Kelvin: Ein Prozess, bei dem lediglich Wärme aus einem Reservoir entnommen und vollständig in Arbeit umgewandelt wird, ist unmöglich.

2 (b) Formulierung von Clausius: Wärme fließt niemals von einem kälteren zu einem wärmeren Objekt, die miteinander in Kontakt stehen.

Man kann zeigen, dass diese Formulierungen äquivalent sind, und dass beide zu der Schlussfolgerung führen, dass eine Zustandsfunktion des Systems existieren muss, die man die Entropie S nennt. Die Entropie ist durch die Beziehung dS = dqrev /T definiert. Man kann zeigen, dass dS ein totales Differenzial ist, d.h. ʃ dS = 0. Die Entropie S ist daher eine Zustandsgröße, die jedes System aufweisen muss.

Die soeben formulierte Definition führt uns zur Clausius’schen Ungleichung, dS ≥ dq/T (Gl. (3.11)), wobei dq die Wärmemenge repräsentiert, die bei einem realen – notwendigerweise irreversiblen - Prozess übertragen wird. In einem abgeschlossenen System (d. h. einem System, dass von seiner Umgebung vollständig isoliert ist) gilt dq = 0, und nach der Clausius’schen Ungleichung ist dann dS ≥ 0 (Gl. (3.12)). Daraus folgt, dass die Entropie in einem abgeschlossenen (isolierten) System bei einem freiwillig ablaufenden Prozess niemals abnehmen kann. Da wir das Universum in seiner Gesamtheit als isoliertes System auffassen können, würde dies bedeuten, dass ∆Sges = ∆SSys + ∆SUmg ≥ 0 ist – diese Ungleichung ist eine alternative Schreibweise für den Zweiten Hauptsatz der Thermodynamik.

Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie

Подняться наверх