Читать книгу Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie - James J. Keeler - Страница 27
Leichte Aufgaben
ОглавлениеL2.2.1a Die bei konstantem Druck übertragene Wärmemenge entspricht gemäß Gl. (2.18b) der Enthalpieänderung des Systems, qp = ΔH. Der Zusammenhang zwischen der Enthalpieänderung, der Temperaturänderung und der Wärmekapazität ist durch Gl. (2.22b) gegeben; demnach gilt für die molare Wärmekapazität bei konstantem Druck
Für ein ideales Gas gilt nach Gl. (2.25) Cp,m – CV ,m = R. Somit erhalten wir für die Wärmekapazität bei konstantem Volumen
L2.2.2a Bei der Ammoniaksynthese werden aus 2 mol der gasförmigen Ausgangsstoffe 4 mol gasförmiges NH3 gebildet. Mithilfe von Gl. (2.19) erhalten wir für die gesuchte Differenz zwischen den molaren Änderungen der Enthalpie und der Inneren Energie
L2.2.3a
1 (i) Die Wärmekapazität bei konstantem Druck kann über die Beziehung Cp = a + bT ausgedrückt werden, wobei a = 20,17 JK−1 und b = 0,3665 JK−2 sein soll. Integration der Beziehung dH = Cp dT liefertWeil der Druck konstant ist, gilt qp = ΔH = +10,7 kJ.Die gegen einen konstanten äußeren Druck pex verrichtete Volumenarbeit ist durch Gl. (2.6) gegeben, w = −pexΔV = − pex(VE − VA). Wenn wir annehmen, dass sich das Gas im mechanischen Gleichgewicht mit der Umgebung befindet, müssen der äußere Druck pex und der Druck des Gases p identisch sein. Das Anfangs- und das Endvolumen des Gases berechnen wir mithilfe der Angaben zu TE und TA gemäß VE = nRTE/p bzw. VA = nRTA/p; es gilt VE − VA = (TE − TA)nR/p. Für die verrichtete Arbeit w und die Änderung der Inneren Energie ΔU erhalten wir
2 (ii) Die Energie und die Enthalpie eines idealen Gases hängen nur von der Temperatur ab (vgl. Abschn. 2.1.2 des Lehrbuchs und Aufgabe L2.1.4a). Daher spielt es keine Rolle, ob sich die Temperatur bei konstantem Volumen oder konstantem Druck ändert. Die Größen ΔH und ΔU sind jeweils gleich, und wie zuvor in Teilaufgabe (a) gilt ΔH = +10,7 kJ und ΔU = +10,1 kJ. Bei konstantem Volumen wird allerdings keine Volumenarbeit verrichtet, und es gilt w = 0. Die übertragene Wärmemenge entspricht daher der Änderung der Inneren Energie, qV = ΔU = +10,1kJ.
L2.2.4a Aus Gl. (2.23) folgt
Gemäß Gl. (2.18b) gilt bei konstantem Druck qp = ΔH, also ist ΔH = +2,2kJ.
Die Enthalpie ist in Gl. (2.17) definiert, H = U + pV. Für eine Enthalpieänderung bei konstantem Druck folgt ΔH = ΔU + pΔV mit ΔV = VE − VA. Wenn wir ein ideales Gas betrachten, gilt VE = nRTE/p und VA = nRTA/p, und die Volumenänderung ist somit ΔV = (TE − TA)nR/p. Es folgt pΔV = nR(TE − TA) = nRΔT, und die Änderung der Inneren Energie eines idealen Gases ist daher