Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 239

Übung 3-6

Оглавление

Berechnen Sie die Standardreaktionsentropie für die Verbrennung von 1 mol CH4(g) zu Kohlendioxid und flüssigem Wasser bei 25 °C. [–243 J K–1 mol–2]

Bei der Diskussion der Enthalpien in Abschnitt 2.2.2 hatten wir festgestellt, dass sich reine Lösungen von Kationen ohne Anionen (oder umgekehrt) nicht herstellen lassen. Aus diesem Grund gibt man auch die molaren Standardentropien von Ionen in Lösung relativ zu einem willkürlichen Wert für das Wasserstoffion H+ an, dessen Standardentropie in wässriger Lösung bei allen Temperaturen gleich null gesetzt wird:

[3-26]

Die in Tabelle 2-8 (imTabellenteil am Ende des Buches) angegebenen Werte beruhen auf dieser Festlegung.4) Da die Entropien von Ionen in Lösung immer relativ zuWasserstoffionen angegeben werden, können sie sowohl positiv als auch negativ sein. Eine positive Entropie bedeutet, dass das Ion eine höhere molare Entropie als Wasserstoffionen besitzt; eine negative Entropie bedeutet umgekehrt eine geringere molare Entropie als Wasserstoffionen. Beispielsweise ist die molare Standardentropie von Cl (aq) gleich +57 J K1 mol–1 und die von Mg2+ (aq) gleich –128 J K–1 mol–1.

Die Entropien von Ionen in Lösung hängen erwartungsgemäß davon ab, in welchem Maße das betreffende Ion den Ordnungszustand der umgebenden Lösungsmittelmoleküle beeinflusst. Kleine, hoch geladene Ionen bewirken eine lokale Strukturierung der Wassermoleküle und die Unordnung in der Lösung nimmt stärker ab als im Falle voluminöser, einfach geladener Ionen. Die absolute molare Standardentropie (nach dem Dritten Hauptsatz) des Protons in wässriger Lösung lässt sich anhand eines Modells der Struktur abschätzen, die das Ion bewirkt.Mittlerweile hat man sich mehr oder weniger auf –21 J K–1 mol–1 geeinigt. Das negative Vorzeichen bedeutet, dass Wasserstoffionen die Ordnung der Lösungsmittelmoleküle erhöhen.

Physikalische Chemie

Подняться наверх