Читать книгу Choroba Parkinsona. Od mechanizmów do leczenia - Группа авторов - Страница 12

3
Genetyka parkinsonizmu
Łukasz Milanowski
Znaczenie dla praktyki klinicznej

Оглавление

Obecnie badania genetyczne stają się coraz powszechniejsze i dostępniejsze w codziennej praktyce klinicznej, chociaż ich znaczenie jest zdecydowanie bardziej naukowe. Stwarzają szanse na lepsze poznanie patogenezy choroby Parkinsona, pozwalają poszukiwać nowych celów farmakoterapii, być może pozwolą na leczenie przyczynowe choroby. Dotychczas były przeprowadzane – lub ciągle są w toku – badania kliniczne, które za cele terapeutyczne obrały PINK1, PARK2 oraz LRRK2.

PIŚMIENNICTWO

Ando M., Fiesel F.C., Hudec R. i in. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol Neurodegener. 2017; 12(1): 32.

Anheim M., Houlden H. VPS13C – another hint at mitochondrial dysfunction in familial Parkinson’s disease: hot topics. Mov Disord. 2016; 31: 1340.

Anheim M., Lagier-Tourenne C., Stevanin G. i in. SPG11 spastic paraplegia: a new cause of juvenile parkinsonism. J Neurol. 2009; 256: 104–108.

Chartier-Harlin M.-C., Dachsel J.C., Vilariño-Güell C. i in. Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet. 2011; 89: 398–406.

Deng H.-X., Shi Y., Yang Y. i in. Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet. 2016; 48: 733–739.

Edvardson S., Cinnamon Y., Ta-Shma A. i in. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating cochaperone auxilin, is associated with juvenile Parkinsonism. PLoS ONE. 2012; 7: e36458.

Fasano D., Parisi S., Pierantoni G.M. i in. Alteration of endosomal trafficking is associated with early-onset parkinsonism caused by SYNJ1 mutations. Cell Death Dis. 2018; 9(3): 385.

Furtado S., Farrer M., Tsuboi Y. i in. SCA-2 presenting as parkinsonism in an Albertafamily: clinical, genetic, and PET findings. Neurology. 2002; 59(10): 1625–1627.

Grunewald A., Voges L., Rakovic A. i in. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS ONE. 2010; 5: e12962.

Heckman M.G., Soto-Ortolaza A.I., Aasly J.O. i in. Population-specific frequenciesfor LRRK2 susceptibility variants in the genetic epidemiology of Parkinson’s disease(GEO-PD) consortium: frequency of LRRK2 Variants in PD. Mov Disord. 2013; 28: 1740–1744.

Hoffman-Zacharska D., Koziorowski D., Ross O.A. i in. Novel A18T and pA29S substitutions in α-synuclein may be associated with sporadic Parkinson’s disease. Parkinsonism Relat Disord. 2013; 19(11): 1057–1060.

Jamrozik Z., Ługowska A., Koziorowski D. i in. Beta-glucocerebrosidase gene mutationP.Asn409Ser and P.Leu438Pro in Polish patients with Parkinson’s disease. J NeurolNeurosci. 2015; 6(4): 54.

Jansen I.E., Bras J.M., Lesage S. i in. CHCHD2 and Parkinson’s disease. Lancet Neurol. 2015; 14: 678–679.

Kasten M., Hartmann C., Hampf J. i in. Genotype-Phenotype Relations for the Parkinson’s Disease Genes Parkin, PINK1, DJ1: MDSGene Systematic Review. Mov Disord. 2018; 33(5): 730–741.

Khodadadi H., Azcona L.J., Aghamollaii V. i in. PTRHD1 (C2orf79) mutations lead to autosomal-recessive intellectual disability and parkinsonism: PTRHD1 mutation in ID and Parkinsonism. Mov Disord. 2017; 32: 287–291.

Koziorowski D., Hoffman-Zacharska D., Sławek J. i in. Incidence of mutations in the PARK2, PINK1, PARK7 genes in Polish early-onset Parkinson disease patients. Neurol Neurochir Pol. 2013; 47(4): 319–324.

Koziorowski D., Hoffman-Zacharska D., Sławek J. i in. Low frequency of the PARK2 gene mutations in Polish patients with the early-onset form of Parkinson disease. Parkinsonism Relat Disord. 2010; 16(2): 136–138.

Kumar S., Jangir D.K., Kumar R. i in. Role of Sporadic Parkinson Disease AssociatedMutations A18T and A29S in Enhanced α-Synuclein Fibrillation and Cytotoxicity.ACS Chem Neurosci. 2018; 9(2): 230–240.

Kurian M.A., Morgan N.V., MacPherson L. i in. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008; 70: 1623–1629.

Lu C.-S., Chou Y.-H.W., Kuo P.-C. i in. The Parkinsonian Phenotype of Spinocerebellar Ataxia Type 2. Arch Neurol. 2004; 61: 35–38.

Lunati A., Lesage S., Brice A. The genetic landscape of Parkinson’s disease. Rev Neurol (Paris). 2018; 174(9): 628–643.

Mencacci N.E., Isaias I.U., Reich M.M. i in. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain. 2014; 137: 2480–2492.

Miyake Y., Tanaka K., Fukushima W. i in. UCHL1 S18Y variant is a risk factor for Parkinson’s disease in Japan. BMC Neurol. 2012; 12: 62.

Potulska-Chromik A., Hoffman-Zacharska D., Łukawska M., Kostera-Pruszczyk A.Dopa-responsive dystonia or early-onset Parkinson diseaseGenotype-phenotypecorrelation. Neurol Neurochir Pol. 2017; 51(1): 1–6.

Puschmann A., Fiesel F.C., Caulfield T.R. i in. Heterozygous PINK1 p.G411S increases risk of Parkinson’s disease via a dominant-negative mechanism. Brain. 2017; 140(1): 98–117.

Ross O.A., Soto A.I., Vilariño-Güell C. i in. Genetic variation of Omi/HtrA2 and Parkinson’s disease. Parkinsonism Relat Disord 2008; 14: 539–543.

Ruiz-Martinez J., Krebs C.E., Makarov V. i in. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J Hum Genet. 2015; 60: 637–640.

Schneider S.A., Paisan-Ruiz C., Quinn N.P. i in. ATP13A2 mutations (PARK9) causeneurodegeneration with brain iron accumulation. Mov Disord. 2010; 25: 979–984.

Siuda J., Jasinska-Myga B., Boczarska-Jedynak M. i in. Early-onset Parkinson’s disease due to PINK1 p.Q456X mutationclinical and functional study. Parkinsonism RelatDisord. 2014; 20(11): 1274–1278.

Sudhaman S., Muthane U.B., Behari M. i in. Evidence of mutations in RIC3 acetylcholine receptor chaperone as a novel cause of autosomal-dominant Parkinson’s disease with non-motor phenotypes. J Med Genet. 2016a; 53: 559–566.

Sudhaman S., Prasad K., Behari M. i in. Discovery of a frameshift mutation in podocalyxin-like (PODXL) gene, coding for a neural adhesion molecule, as causal forautosomal-recessive juvenile Parkinsonism. J Med Genet. 2016b; 53: 450–456.

Tanaka K., Suzuki T., Chiba T. i in. Parkin is linked to the ubiquitin pathway. J Mol Med. 2001; 79: 482–494.

Trinh J., Zeldenrust F.M.J., Huang J. i in. Genotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov Disord. 2018; 33(12): 1857–1870.

Vilariño-Güell C., Rajput A., Milnerwood A.J. i in. DNAJC13 mutations in Parkinsondisease. Hum Mol Genet. 2014; 23: 1794–1801.

Vilariño-Güell C., Wider C., Ross O.A. i in. VPS35 mutations in Parkinson disease.Am J Hum Genet. 2011; 89: 162–167.

Wei L., Ding L., Li H. i in. Juvenile-onset parkinsonism with pyramidal signs due to compound heterozygous mutations in the F-Box only protein 7 gene. Parkinsonism Relat Disord. 2018; 47: 76–79.

Wilson G.R., Sim J.C.H., McLean C. i in. Mutations in RAB39B Cause X-linked intellectual disability and early-onset Parkinson disease with a-Synuclein Pathology. Am J HumGenet. 2014; 95: 729–735.

Choroba Parkinsona. Od mechanizmów do leczenia

Подняться наверх