Читать книгу Organización industrial - Martin Peitz - Страница 49
3.3.1 Capacidad limitada y competencia en precios
ОглавлениеEl modelo de Bertrand afirma que las empresas pueden satisfacer cualquier demanda a costos marginales constantes. Esto quiere decir que no tienen restricciones de capacidad. Para una gran parte de la producción industrial el supuesto de costos unitarios constantes (o incluso decrecientes) puede ser un supuesto adecuado. Sin embargo, esto solamente es válido mientras la capacidad no se utilice del todo. Aumentar la producción más allá de los límites de la capacidad con frecuencia es prohibitivamente costoso, de manera que, a corto plazo, una empresa debe respetar esas decisiones de capacidad. Edgeworth (1897) fue el primero en realizar esta crítica al modelo de Bertrand. Un ejemplo concreto relacionado con las ventas al por menor es que estos los vendedores minoristas deben ordenar los productos con suficiente anterioridad; después deben respetar los límites de capacidad al momento de fijar los precios.[18] El caso 3.3 proporciona otro ejemplo.
Recuerde el caso de la industria de alquiler de DVD por correo que describimos en la introducción.[19] Mencionamos que, en cualquier momento, la demanda de películas nuevas es mayor que la demanda de películas que salieron, por ejemplo, seis meses o un año atrás. Para satisfacer esta demanda más elevada, empresas como Netflix o Blockbuster deberían mantener un inventario extra de copias de las últimas películas. Sin embargo, estas copias también son más costosas. Esto ha llevado a que las empresas desarrollen una interfaz para el usuario y esquemas de precios para direccionar a los suscriptores a que alquilen películas viejas y no nuevas. Esto muestra que la decisión sobre las capacidades costosas precede y condiciona las decisiones sobre precios. Un argumento similar nos permite entender por qué los vuelos son mucho más caros alrededor de Navidad: más gente quiere viajar en esa época del año, pero la capacidad es fija (es decir, en todos los aviones hay un número fijo de sillas y los aeropuertos pueden recibir un número determinado de vuelos por día). También se entiende por qué la industria de transporte aéreo de pasajeros ha inventado la práctica de “la administración de los rendimientos (o ingresos)”, que es una forma de discriminación de precios (ver Parte IV) adaptada a situaciones con capacidades fijas, pero demanda fluctuante (por ejemplo, el transporte aéreo, la hotelería o el alquiler de automóviles). El principio subyacente de la administración de los rendimientos puede resumirse de la siguiente forma: fijar el precio exacto, para vender el producto exacto, al cliente exacto, en el momento justo. De nuevo, las decisiones sobre capacidad y precio están vinculadas estrechamente.
Para aproximarnos a estos mercados, consideramos que las empresas pueden pre-comprometerse con una capacidad de producción, antes de entrar a competir en precios. Veremos que, bajo un número de supuestos, este modelo de capacidad-después-precios conduce al mismo resultado que el modelo de Cournot de competencia en cantidades. También discutiremos lo que ocurre cuando se relajan estos supuestos.
El modelo
Para establecer este resultado, estudiamos el siguiente juego de dos etapas:[20] en la primera etapa, las empresas determinan las capacidades simultáneamente; en la etapa 2, las empresas fijan los precios pi simultánemente. Suponemos que el costo marginal de la capacidad es c y que se incurre en él en la primera etapa; luego, una vez instalada la capacidad, el costo marginal de producción en la segunda etapa es cero. Bajo estas condiciones, caracterizamos el equilibrio perfecto en subjuegos. Esto implica que, en la etapa 1, las empresas son conscientes de que su decisión sobre la capacidad puede afectar los precios de equilibrio. Las empresas no solamente conocen su propia decisión sobre su capacidad, sino que también suponemos que observan la decisión de los competidores sobre su capacidad. Para muchos productos industriales, este es un supuesto apropiado dado que los tamaños de las fábricas son conocidos. Este supuesto puede ser más problemático en el caso de los minoristas, aunque es apropiado en algunos casos. Por ejemplo, si se piensa en un mercado campesino local, los vendedores pueden observar fácilmente las restricciones de capacidad de los competidores.
Al permitir que existan restricciones de capacidad, es bastante posible que una empresa fije un precio tan bajo que la cantidad demandada a ese precio exceda su oferta. Esto implica que algunos consumidores se quedarán sin producto. Supongamos que hay una segunda empresa en el mercado que ofrece el producto a un precio más alto. ¿Quién obtendrá el producto al precio más bajo y quién no? En este momento debemos realizar supuestos sobre el esquema de racionamiento. Suponemos que hay racionamiento eficiente, esto es, que los consumidores dispuestos a pagar más obtienen primero el producto. Podemos proporcionar dos justificaciones para este esquema de racionamiento. Si hay racionamiento, los productos se asignarán de acuerdo con el orden en la fila. Supongamos que cada consumidor demanda 0 o 1 unidades. Entonces, los consumidores con mayor disposición a pagar estarán de primeros en la fila. De modo alternativo, independientemente de la forma en que se asigna un producto que tiene exceso de demanda, puede haber mercados secundarios que funcionan sin costos; entonces, los consumidores con mayor disposición a pagar les revenderán a los consumidores con una alta disposición a pagar. Por lo tanto, los consumidores con una alta disposición a pagar nunca se quedarán sin producto.[21]
La figura 3.4 ilustra el racionamiento eficiente. El consumidor con la mayor disposición a pagar compra la primera unidad, el segundo consumidor con la siguiente disposición más alta compra la siguiente unidad, y así sucesivamente. Así, si la empresa 1 tiene una capacidad de unidades, estas unidades se les venden a los consumidores con la mayor disposición a pagar. Si p1 < p2 es tal que la cantidad es insuficiente para satisfacer a todos los consumidores, de modo que entonces algunos consumidores no obtendrán el producto y habrá una demanda residual positiva para la empresa 2 (este no será el caso en el modelo de Bertrand puro, pues en él la capacidad nunca es vinculante).
Figura 3.4 Racionamiento eficiente con capacidades limitadas
Primero queremos analizar el juego de fijación de precios para capacidades dadas. Antes de hacerlo, conviene observar que una empresa nunca fija una capacidad muy grande pues la capacidad es costosa. Para ser precisos, una empresa nunca fijará una capacidad tal que sus ingresos sean menores que los costos, independientemente de la decisión de sus competidores. Tomando la demanda lineal Q(p) = a – p, los ingresos máximos de una empresa son maxq q(a – q) = a2/4; la cantidad entonces es q = a/2. En la etapa 1, los costos tienen que ser menores que los ingresos máximos, Por lo tanto, la decisión para escoger la capacidad que maximiza los beneficios debe satisfacer
Ahora analizamos la etapa de fijación de precios para capacidades que satisfacen la desigualdad anterior. Si la empresa 1 ofrece el producto a un precio más bajo, la empresa 2 enfrenta la siguiente demanda residual para el producto 2:
Por lo tanto, para p1 < p2, los beneficios son
Ahora queremos probar que el equilibrio en la segunda etapa del juego es tal que ambas empresas fijan el precio que despeja el mercado: (efectivamente este precio despeja el mercado dado que iguala oferta y demanda, esto es, la capacidad total). Este resultado es válido siempre y cuando el parámetro de demanda a no sea demasiado grande; en particular, imponemos la siguiente condición:
Para probar este resultado, procedemos de la siguiente manera: suponiendo que p1 = p*, necesitamos mostrar que p2 = p* es una mejor respuesta; esto es, la empresa 2 no puede obtener beneficios más altos al fijar un precio más bajo o más alto que p*. Primero, resulta fácil ver que fijar un precio más bajo, p2 < p*, no es una desviación rentable. En efecto, a p1 = p2 = p* la empresa 2 vende toda su capacidad Al bajar su precio, la empresa 2 aumentaría la demanda para su producto, pero no podría satisfacer esta demanda adicional porque su capacidad está restringida. Por lo tanto, la empresa 2 vendería la misma cantidad que antes, pero a un precio más bajo, lo que disminuiría sus beneficios.
Segundo, sabiendo que la empresa 1 tiene una restricción de capacidad, la empresa 2 podría determinar que le resulta rentable aumentar su precio (p2 > p*). En efecto, debido a la capacidad limitada de la empresa 1, la empresa 2 puede vender un volumen positivo a un precio por encima de p1. Este caso requiere en examen más cuidadoso que el anterior. Recuerde que las empresas han incurrido en el costo marginal c al instalar su capacidad en la primera etapa. Por lo tanto, en la segunda etapa maximizan sus ingresos (dado que el costo marginal de producción es cero). Siempre y cuando p1 < p2, los ingresos de la empresa 2 son
Tenemos que mostrar que el equilibrio propuesto p* está ubicado a la derecha del máximo de esta función de ingresos (como se ilustra en la figura 3.5). Si esto es válido, hemos completado la prueba, porque aumentar el precio más allá de p* disminuye los beneficios, lo que quiere decir que tal desviación no es rentable. El máximo de la función de ingresos es igual a Entonces,
Invocando (3.9), sabemos que Por lo tanto, se cumple necesariamente si
Lo que está garantizado por la condición (C1). Por lo tanto, no es rentable fijar p2 > p*, lo que completa nuestra prueba.
Figura 3.5 Fijar p2 > p* no es una desviación rentable
Ahora podemos insertar estos precios de equilibrio de la etapa 2 en las funciones de beneficios, para obtener las funciones reducidas de beneficios para la etapa uno, que solamente dependen de las capacidades:
Vemos que, si reinterpretamos las capacidades como cantidades, la función objetivo es la misma que en el modelo de Cournot, donde las empresas no fijan los precios, sino que, para cualquier cantidad, el precio despeja el mercado.
Lección 3.10 En el juego capacidad-después-precio con racionamiento eficiente para el consumidor (y con demanda lineal y costos marginales constantes), las capacidades escogidas son iguales a las de un mercado de Cournot estándar.
Discusión
Debemos enfatizar que la Lección 3.10 se obtiene bajo una restricción paramétrica y para una regla de racionamiento particular. ¿Qué pasa si relajamos esos supuestos? Note primero que la clave para que el resultado previo sea válido es que la empresa i no tenga incentivos para aumentar su precio por encima de p* cuando la empresa j fija pj = p*.[22] Bajo la regla de racionamiento eficiente, vimos que a la empresa i, ignorando su restricción de capacidad, le gustaría fijar La empresa i tendrá capacidad suficiente para satisfacer la demanda residual a ese precio si Como vimos antes, la restricción paramétrica que impusimos excluye esta posibilidad. En particular, esta restricción garantiza que las empresas no instalen capacidades superiores a a/3 (de hecho, para a < (4/3)c, el límite superior a las capacidades rentables, a2/(4c), está por debajo de a/3). Note que a/3 es justamente la producción de las empresas en el equilibrio de Cournot sin costos de producción. Entonces, podemos generalizar nuestro resultado previo afirmando que, bajo racionamiento eficiente, p1 = p2 = p* es el único equilibrio de la segunda etapa cuando la capacidad de cada empresa es menor o igual a su mejor respuesta de Cournot a la capacidad de la otra empresa. Por fuera de esta región de capacidad (que es posible al relajar la restricción paramétrica, por ejemplo, para a > (4/3) c), no existe un equilibrio en estrategias puras en la etapa 2: los únicos equilibrios son en estrategias mixtas donde las empresas aleatorizan los precios sobre un intervalo común de precios. Sin embargo, puede mostrarse que las decisiones sobre la capacidad en la primera etapa siguen correspondiendo al equilibrio en cantidades de Cournot.[23]
Consideremos ahora una regla alternativa de racionamiento. Edgeworth (1897) propuso asignar las unidades más baratas del producto aleatoriamente entre los consumidores. Bajo esta regla de racionamiento proporcional, todos los consumidores tienen la misma probabilidad de quedarse sin producto.[24] Bajo esta regla, el precio más alto cobrado siempre será el precio de monopolio pm. En efecto, ignorando su restricción de capacidad, la empresa i maximiza α pi Q(pi), donde α es la fracción esperada de consumidores que atiende la empresa i. Si pm < p*, entonces la empresa i no tiene capacidad suficiente para satisfacer la demanda residual en pm y decide entonces fijar pi = p*. Dado que pm = a/2, la última condición equivale a que es más exigente que la condición correspondiente que obtuvimos bajo la regla de racionamiento eficiente (en realidad, las capacidades lo suficientemente cercanas al límite superior dado por (3.9) violan esta condición dado que a > c implica que a2/(2c) > a/2). Para capacidades por fuera de esta región, de nuevo, los únicos equilibrios son en estrategias mixtas. Aquí, por lo general, resulta difícil derivar estas estrategias mixtas. Sin embargo, es posible mostrar que, bajo racionamiento proporcional, el equilibrio tiende a ser más competitivo que el de Cournot.[25]