Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 217

Ein praktisches Beispiel

Оглавление

Wir betrachten die Übertragung der Wärmemenge dq von einem wärmeren (Temperatur Tw) auf einem kälteren Körper (Temperatur Tk) (Abb. 3-10). Wenn dem wärmeren Körper die Wärmemenge |dq| entnommen wird (dqw < 0), so ändert sich die Entropie gemäß der clausiusschen Ungleichung um dS ≥ dqw/ Tw. Wird dagegen dem kälteren Körper die Wärmemenge |dq| zugeführt (dqk > 0), so ändert sich die Entropie um dS ≥ dqk/ Tk. Insgesamt beträgt die Änderung der Entropie also


Wegen dqw = –dqk ist


Dieser Wert ist immer positiv (dqk > 0, TwTk). Daher findet – wie wir auch aus der Erfahrung wissen – die Abkühlung (der Wärmeübergang von einem warmen auf ein kaltes Medium) immer freiwillig statt.


Abb. 3-10 Wenn einem warmen Reservoir eine Wärmemenge entzogen wird, sinkt seine Entropie. Führt man dieselbe Wärmemenge einem kalten Reservoir zu, steigt dessen Entropie um einen größeren Wert. Daher nimmt die Entropie während des Prozesses insgesamt zu, und dieser läuft freiwillig ab. Die relative Größe der Entropieänderungen wird durch die unterschiedliche Dicke der Pfeile angedeutet.

Betrachten wir nun ein abgeschlossenes System, also dq = 0. Aus der clausiusschen Ungleichung folgt dann

(3-13)

wir können somit schließen, dass die Entropie eines abgeschlossenen Systems bei einer freiwilligen Zustandsänderung nicht abnehmen kann. Diese Feststellung entspricht inhaltlich dem Zweiten Hauptsatz der Thermodynamik.


Abb. 3-11 (a) Wärme fließt nicht spontan von einem warmen zu einem kalten Reservoir. Wie hier gezeigt ist, steigt die Entropie des warmen Reservoirs weniger stark an, als die Entropie des kalten Reservoirs abnimmt; insgesamt nimmt die Entropie also ab. (b) Möglich wird der Prozess, wenn zusätzlich Arbeit verrichtet wird; so kann man erreichen, dass die Entropiezunahme des warmen Reservoirs die Entropieabnahme des kalten Reservoirs gerade ausgleicht.

Physikalische Chemie

Подняться наверх