Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 218

Anwendung 3-1 Kälteerzeugung

Оглавление

Mit derselben Argumentation, die wir bei der Diskussion des Wirkungsgrads einer Wärmekraftmaschine benutzt hatten, können wir auch den Wirkungsgrad einer Kältemaschine diskutieren, d. h. einer Maschine, die Energie in Form von Wärme von einem kalten Objekt (einem Gegenstand im Kühlschrank) aufein warmes Reservoir (in der Regel den Raum, in dem der Kühlschrank steht) überträgt. Je weniger Energie hierfür benötigt wird, desto effizienter arbeitet der Kühlschrank.

Wird eine Wärmemenge |qk| aus einem kalten Reservoir mit der Temperatur Tk entnommen und einem warmen Reservoir mit der Temperatur Tw zugeführt, so ist die Entropieänderung

(3-14)

Dieser Prozess läuft nicht freiwillig ab, weil im warmen Reservoir nicht genügend Entropie erzeugt wird, um den Entropieverlust im kalten Reservoir auszugleichen (Abb. 3-11). Abhilfe schafft die zusätzliche Zufuhr von Arbeit zum warmen Reservoir. Unsere Aufgabe ist nun zu berechnen, wie viel Energie dazu mindestens notwendig ist. Das Resultat formulieren wir als Leistungskoeffizient c,

[3-15]

Je weniger Arbeit aufgewendet werden muss, um eine gegebene Wärmemenge zu übertragen, umso größer ist der Leistungskoeffizient und umso effektiver arbeitet die Kältemaschine.

Da dem kalten Reservoir die Wärmemenge |qk| entnommen und zusätzlich von außen die Arbeit |w| zugeführt wird, muss im warmen Reservoir insgesamt die Energie |qw| = |qk| + |w| gespeichert werden. Es ist dann


Wenn der Austausch reversibel erfolgt, können wir dieses Ergebnis mithilfe von Gl. (3-7) ausschließlich unter Verwendung der Temperaturen ausdrücken. Wir erhalten für den optimalen Leistungskoeffizienten zunächst


und schließlich

(3-16)

Physikalische Chemie

Подняться наверх