Читать книгу Toutes les Oeuvres Majeures d'Aristote - Aristote - Страница 71
CHAPITRE PREMIER
ОглавлениеDe la continuité ; le continu ne peut pas se composer d’Indivisibles ; la ligne et le point. — Objections et théories contraires : la grandeur, le temps et le mouvement doivent se composer d’indivisibles ; démonstrations particulières de ces trois propositions — Démonstrations en sens contraire ; rapports de la grandeur et du temps ; les conditions qui les régissent sont identiques. Tout continu a nécessairement des parties divisibles à l’infini.
Si la continuité, le contact et la consécution sont bien ce qu’on a dit plus haut, et si l’on entend par continus les corps dont les extrémités sont réunies, par contigus ceux dont les extrémités sont ensemble dans un même lieu, et par consécutifs ceux entre lesquels il n’y a rien d’intermédiaire qui leur soit homogène, il s’ensuit qu’il est impossible qu’aucun continu se compose d’indivisibles, et, par exemple, que la ligne se compose de points, puisque la ligne est continue et que le point est indivisible. Car, d’abord, les extrémités des points ne sont pas réunies, attendit que dans l’indivisible il ne peut y avoir ni extrémités, ni telle autre partie quelconque. Eu second lieu, les extrémités des points ne sont pas non plus ensemble dans l’espace, puisqu’il n’y a pas d’extrémité possible pour ce qui est sans parties, et qu’autre est l’extrémité, autre est la chose qui a cette extrémité.
De plus, il faudrait nécessairement ou que les points fussent continus, ou qu’ils se touchassent entre eux, pour composer un continu véritable ; et cette même observation s’applique à tous les indivisibles. Mais les points ne sont pas continus par la raison qu’on vient de dire ; et tout ce qui est contigu ne peut l’être que du tout au tout, ou de la partie à la partie, ou de la partie au tout. Or, l’indivisible étant sans parties, il faut nécessairement qu’il touche du tout au tout. Mais il ne suffit pas de toucher du tout au tout pour être continu, puisque le continu a telle et telle partie, et qu’il est divisible en parties qui diffèrent ainsi entre elles et sont séparées par le lieu qu’elles occupent. Enfin, le point ne peut pas plus suivre le point que l’instant ne suit l’instant, ici pour former la longueur, et là pour former le temps ; car deux choses se suivent, avons-nous dit, lorsqu’entre elles il n’y a rien qui leur soit homogène. Mais, entre les points, il y a toujours pour intermédiaire la ligne ; et pour les instants, il y a toujours le temps.
Il faudrait encore qu’ils pussent se diviser en indivisibles, puisque chacun d’eux se divise dans les éléments dont il se compose. Mais nous avons prouvé qu’il n’y a pas de continus qui puissent se partager en éléments dénués de parties.
D’ailleurs, il n’est pas possible qu’il y ait entre les points et entre les instants quelque intermédiaires d’un genre différent ; car, s’il y en avait un, cet intermédiaire serait évidemment ou divisible ou indivisible. Divisible, il se diviserait en indivisibles ou en éléments toujours divisibles ; et c’est là précisément ce qu’on entend par le continu.
Il est encore évident que tout continu est divisible en éléments indéfiniment divisibles ; car, s’il se divisait en indivisibles, l’indivisible alors pourrait toucher à l’indivisible, puisque, dans les continus, l’extrémité est une et contiguë.
Par la même raison, la grandeur, le temps et le mouvement doivent tons les trois se composer d’indivisibles et se diviser en indivisibles, ou bien aucun d’eux ne le pourra : et voici comment on le prouve. Si la grandeur se compose d’indivisibles, il faut aussi que le mouvement de cette grandeur se compose de mouvements égaux indivisibles. Par exemple, si la grandeur ABC se compose des indivisibles A, B, C, le mouvement DEF, selon lequel O est supposé mu sur la grandeur ABC, a chacune de ses parties correspondantes indivisibles.
Si donc, quand il y a un mouvement actuel, il faut nécessairement que quelque corps se meuve, il ne faut pas moins nécessairement, lorsque quelque chose se meut, qu’il y ait actuellement un mouvement ; et la ligne selon laquelle le mouvement a lieu se composera ainsi d’indivisibles. Par exemple, O a parcouru la portion A en faisant le mouvement D ; il a parcouru la portion B en faisant le mouvement F ; et la portion C, de même, en faisant le mouvement F.
Mais, de toute nécessité, un mobile allant d’un point à un autre, ne peut pas, dans un même instant, se mouvoir et avoir été mu sur le point où il a été en mouvement, quand il était en mouvement. Par exemple, si l’on va à Thèbes, il est impossible que ce soit en même temps et qu’on aille à Thèbes et qu’on y soit allé. Mais O faisait dans son mouvement la longueur A, qui est sans parties, et à laquelle correspondait le mouvement D. Par conséquent, si le mobile O a parcouru cette longueur A plus tard qu’il ne la parcourt, cette longueur est toujours divisible ; car, lorsque le mobile la parcourt, il n’est pas en repos. Il ne l’a pas non plus encore parcourue ; mais il est en train de la parcourir ; et si l’on dit qu’il la parcourt en même temps qu’il l’a parcourue, il en résulte que ce qui va quelque part, quand il y va, y sera déjà allé, et qu’il aura été mu lui-même où il est mu.
Si l’on admet qu’un corps parcourant dans son mouvement la ligne ABC tout entière, et que le mouvement dont il est animé étant DEF, ce corps n’a pas de mouvement suivant la longueur A, laquelle est dénuée de parties, mais qu’il en a eu, il s’ensuit alors que le mouvement se compose non de mouvements, mais de soubresauts. Il s’ensuit encore que quelque chose qui n’a pas eu de mouvement, aura cependant été mis en mouvement ; car le mobile O a parcouru A sans le parcourir, de telle sorte que le corps aura marché sans être jamais en marche, et qu’il aura fait telle route sans faire jamais cette même route. Mais si nécessairement tout corps doit être on en repos ou en mouvement, et que le corps soit en repos sur les points ABC, il sera alors tout à la fois, d’une manière continue, et en repos et en mouvement ; car on le supposait en mouvement selon la ligne entière ABC, et en repos dans chaque partie. Donc il était en repos pour la longueur entière. Enfin si les indivisibles de la ligne DEF sont des mouvements, il s’ensuit que même quand il y a mouvement, les corps pourraient n’être pas mus, mais être en repos ; et si ces indivisibles ne sont pas des mouvements, le mouvement alors ne se composerait plus de mouvements.
Il serait pareillement nécessaire que le temps fût indivisible, tout comme le sont la longueur et le mouvement, et qu’il se composât d’instants qui seraient indivisibles ; car si tout mouvement est divisible, et si un corps conservant une égale vitesse parcourt moins d’espace en un moindre temps, le temps alors sera divisible aussi ; et réciproquement, si le temps dans lequel un corps parcourt la ligne A est divisible, la ligne A sera divisible également.
Comme toute grandeur est divisible en grandeurs, car il a été démontré qu’un continu ne peut jamais se composer d’indivisibles et que toute grandeur est continue, il s’ensuit nécessairement qu’un corps qui est doué de plus de vitesse, parcourt plus d’espace en un temps égal, qu’il en parcourt autant dans un temps moindre, et même que dans un temps plus petit il peut en parcourir davantage ; définition qu’on donne quelquefois pour expliquer ce que c’est qu’une vitesse plus grande.
Supposons, en effet, le corps représenté par A plus rapide que le corps représenté par B. Puisque le corps le plus rapide est celui qui fait son changement avant l’autre, dans le temps où A a changé de C en D, soit le temps FG, Il n’en est pas encore à D ; mais il est en arrière. Ainsi, le corps le plus rapide a parcouru plus d’espace eu un temps égal.
Mais, dans un temps moindre, le corps le plus rapide pourra aussi parcourir plus d’espace. Ainsi, supposons que dans le temps que A met à venir à D, B ne va qu’à E, puisque B est plus lent. Or, puisque A va en D dans tout le temps FG, il sera en H pour un temps moindre que celui-là. Supposons que ce soit dans le temps FI. CI, qu’a parcouru A, est plus grand que CE. Mais le temps FI est moindre que le temps total FG, de telle sorte qu’en un temps moindre le corps a parcouru plus d’espace.
Maintenant, on doit voir d’après ceci que le corps le plus rapide peut parcourir aussi un espace égal dans un temps plus petit. En effet, il parcourt la ligne la plus longue dans un temps moindre que le corps le plus lent. Pris en lui-même, il lui faut plus de temps pour parcourir la ligne la plus longue que pour parcourir la plus petite ; par exemple, LM plus grande que LX. Ainsi, le temps PR qui lui est nécessaire pour parcourir LM, est plus grand que le temps PS dans lequel il parcourt LX. Si donc le temps PR est plus petit que le temps PQ, dans lequel le corps plus lent parcourt LX, le temps PS sera plus petit que PQ ; car il est plus petit que PR, et ce qui est plus petit que le plus petit est lui-même aussi plus petit. Donc le corps aura parcouru dans son mouvement un espace égal durant un temps moindre.
Autre démonstration. S’il faut nécessairement que tout mouvement se passe, ou dans un temps égal, ou dans un temps plus petit, ou dans un temps plus grand, celui à qui il faudra plus de temps sera plus lent : celui à qui il faudra un temps égal aura une vitesse égale. Mais ce qui est plus rapide n’est ni égal en vitesse, ni plus lent ; or, comme le plus rapide ne se meut, ni dans un temps égal, ni dans un temps plus long, il reste qu’il se meuve en un temps moindre ; et par une conséquence nécessaire, le corps plus rapide parcourt en moins de temps un espace égal.
D’autre part, tout mouvement se passant toujours dans le temps, et le mouvement pouvant avoir lieu dans le temps entier, de même que tout corps en mouvement peut être mu plus vite ou plus lentement, il s’ensuit qu’il peut y avoir dans le temps entier un mouvement plus rapide ou plus lent.
Ceci étant, il en résulte évidemment que le temps aussi est continu. J’entends par continu ce qui est divisible en parties toujours divisibles ; et si c’est bien là ce qu’est le continu, le temps doit être continu de toute nécessité. En effet, nous avons démontré que le corps le plus rapide parcourt un espace égal en moins de temps. Soit A le corps plus rapide, et B, le corps plus lent ; et que le corps plus lent parcoure la grandeur CD dans le temps FG. Il est évident que le corps le plus rapide parcourra la même longueur en un temps plus court. Supposons que ce soit dans le temps FH. Or, comme le plus rapide a parcouru dans le temps FII toute la ligne CD, le plus lent n’aura parcouru dans le même temps glue la ligne plus courte que nous représenterons par CI. Mais le corps le plus lent, B, dans le temps FH, a parcouru CI, que le plus rapide a parcouru en moins de temps. Ainsi, le temps FH sera divisé de nouveau ; et ce temps étant divisé, la ligne Cl sera divisée suivant la même raison. Si la grandeur est divisible, le temps le sera comme elle ; et il en sera toujours ainsi, en allant du plus rapide au plus lent, ou du plus lent au plus rapide, d’après la démonstration qui vient d’être donnée. Le plus rapide divisera le temps ; et le plus lent divisera la longueur. Si donc la réciproque de l’un à l’autre est toujours vraie, en y recourant la division sera toujours possible. Donc il est évident que le temps est toujours continu.
En même temps, il est évident aussi que toute grandeur est continue, puisque le temps et la grandeur admettent absolument les mêmes divisions, c’est-à-dire des divisions égales.
On peut se convaincre encore, rien qu’à considérer les opinions et le langage ordinaires, que le temps étant continu, la grandeur l’est comme lui, puisque l’on dit toujours que dans la moitié d’un temps on parcourt la moitié de l’espace, et, d’une manière générale que, dans un temps moindre, on parcourt un moindre espace. Ainsi les divisions du temps et de la grandeur seront les mêmes.
Si donc l’un des deux est infini, l’autre l’est également, et l’un est tout à fait infini comme l’autre. Par exemple, si le temps est infini à ses extrémités, la grandeur l’est également aux siennes. Si le temps est infini parce que la division est toujours possible, la longueur l’est aussi de cette manière ; et si le temps est infini sous ces deux rapports, la longueur l’est également sous les deux.
C’est là ce qui constitue l’erreur du raisonnement de Zénon, quand il prétend qu’on ne peut parcourir les infinis, ni toucher les infinis successivement dans un temps fini. En effet, quand on dit que le temps et la longueur sont infinis, ou plus généralement que tout continu est infini, cette expression a deux sens, selon que l’on entend parler, ou de la division, ou des extrémités. Quant aux infinis de quantité, il est impossible qu’on les touche dans un temps fini. Mais on le peut pour les infinis de division ; et c’est en ce sens que le temps lui-même est infini. Par conséquent, on ne peut parcourir l’infini que dans un temps infini, et non dans un temps fini ; et l’on ne peut toucher des infinis que par des infinis, et non par des finis.
Il n’est donc pas possible, ni de parcourir l’infini dans un temps fini, ni de parcourir le fini dans un temps infini. Si le temps est infini, la grandeur sera infinie comme lui ; et réciproquement, si la grandeur est infinie, le temps l’est comme elle.
Soit, en effet, une grandeur finie AB, et le temps infini C. Prenons une portion finie du temps CD. Dans cet intervalle de temps, on parcourt une partie de la grandeur. Soit BE la partie ainsi parcourue. Cette partie mesurera exactement la grandeur AB, ou bien elle sera plus petite, ou bien enfin elle sera plus grande, peu importe. Si l’on parcourt toujours dans un temps égal la grandeur égale à BE, et que cette grandeur mesure exactement le tout, le temps entier dans lequel on l’a parcourue sera fini, puisqu’il sera divisé en parties égales comme la grandeur AB.
De plus, si l’on n’a pas besoin pour parcourir toute grandeur d’un temps infini, on en parcourt, du moins une partie dans un temps fini. Soit cette partie BE ; elle mesure exactement la grandeur totale, et l’on parcourt une partie égale dans un temps égal. Donc le temps aussi est fini. Mais il est évident qu’on n’a pas besoin d’un temps infini pour parcourir BE, si l’on suppose que le temps est fini dans un des deux sens ; car si l’on parcourt la partie dans un temps moindre, il faut nécessairement que le temps soit fini, puisque l’une des deux limites existe déjà.
Même démonstration, si c’est la grandeur qui est infinie et que le temps soit fini.
Donc il est évident, d’après tout ceci, que ni la ligne ni la surface, ni aucun continu n’est indivisible, non seulement d’après les arguments qu’on vient d’exposer, mais encore parce qu’il en résulterait que l’indivisible serait divisé. En effet, comme dans toute espèce de temps, ou distingue le mouvement rapide et le mouvement lent, et que le plus rapide parcourt plus d’espace dans un temps égal, le corps plus rapide peut parcourir soit une longueur double, soit une rois et demie la longueur ; car ce peut être là le rapport de la vitesse. Que le plus rapide parcoure donc la moitié en sus de la grandeur en un temps égal, et que les grandeurs soient divisées, celles du plus rapide en AB, BC, CD, toutes trois indivisibles ; et que les grandeurs du plus lent, soient partagées en deux, EF, FG. Le temps sera donc partagé aussi en trois indivisibles, puisque le corps en effet parcourt une quantité égale dans un temps égal. Que le temps soit, par exemple, divisé en KL, LM, MN. Mais de son côté le plus lent parcourait la ligne EF, FG. Donc le temps sera partagé en deux portions ; donc aussi l’indivisible sera divisé ; et le corps parcourt l’espace qui est sans parties, non point dans un temps indivisible mais en plus de temps. Donc évidemment, il n’y a pas de continu qui soit sans parties.