Читать книгу Toutes les Oeuvres Majeures d'Aristote - Aristote - Страница 84
CHAPITRE XIV
ОглавлениеRéfutation de la théorie de Zénon, niant la possibilité du mouvement ; les quatre arguments de Zénon ; examen de ces quatre arguments ; démonstration de l’erreur de Zénon. Théorie nouvelle substituée à la sienne ; preuves de la vérité de la théorie qui admet le mouvement.
Mais Zénon fait un faux raisonnement : « Si toute chose, dit-il, doit toujours être soit en mouvement soit en repos, quand elle est dans un espace égal à elle-même, et si tout corps qui se déplace est toujours pendant chaque instant dans un espace égal, il s’ensuit que la flèche qui vole est immobile. » Mais c’est là une erreur, attendu que le temps n’est pas un composé d’instants, c’est-à-dire d’indivisibles, pas plus que nulle autre grandeur.
Zénon a sur le mouvement quatre raisonnements, qui ne laissent pas que d’embarrasser ceux qui tentent de les réfuter.
D’abord, il prétend prouver que le mouvement n’existe pas, attendu que le mobile passe par la moitié avant d’arriver à la fin. Nous avons réfuté ce sophisme dans nos discussions antérieures.
Le second sophisme de Zénon est celui qu’on appelle l’Achille. Il consiste à dire que jamais le plus lent, quand il est en marche, ne pourra être atteint par le plus rapide, attendu que le poursuivant doit, de toute nécessité, passer d’abord par le point d’où est parti celui qui fuit sa poursuite, et qu’ainsi le plus lent conservera constamment une certaine avance.
Ce raisonnement revient à celui de la division par deux ; et, la seule différence, c’est qu’ici l’on ne divise pas continuellement en deux la grandeur surajoutée. On tire bien de cet argument cette conclusion régulière qu’il n’est pas possible que le plus lent soit jamais atteint ; mais c’est toujours absolument la même chose que dans la division par deux, puisque de part et d’autre on conclut qu’on ne peut arriver au bout, de quelque manière qu’on partage la grandeur. Seulement, dans l’Achille, on ajoute que même le plus rapide ne pourra jamais rejoindre le plus lent ; et c’est plus pompeux et plus tragique.
La solution est donc des deux côtés nécessairement identique. Mais supposer que ce qui est en avance n’est pas rejoint., c’est là qu’est l’erreur. Sans doute tant qu’il est en avance, il n’est pas rejoint ; mais, en définitive, cependant il est rejoint, puisque Zénon doit accorder que la ligne finie est parcourue.
Voilà donc déjà deux des arguments de Zénon.
Le troisième, dont nous venons de parler à l’instant, c’est que la flèche qui vole dans les airs reste en place ; et de ce principe on tire cette conclusion que le temps est, selon Zénon, composé d’instants. Mais, en repoussant ce principe, que l’on ne concède point, il n’y a plus d’argument.
Quant au quatrième, il s’applique à des masses égales qu’on suppose se mouvoir également, par exemple, dans le stade, mais, en sens contraire, les unes partant de l’extrémité du stade et les autres du milieu ; et l’on prétend démontrer que le temps, qui n’est que la moitié, est l’égal du temps qui est le double.
Le sophisme consiste en ceci, qu’on suppose que la grandeur égale, animée de la même vitesse, se meut dans le même temps, soit relativement à la masse qui est en mouvement, soit relativement à la masse qui est en repos ; et c’est là qu’est l’erreur.
Soient, par exemple, les masses égales en repos représentées par AAAA. Soient, d’autre part, BBBB, les masses égales en nombre et en grandeur aux A, mais qui partent du milieu de la longueur des A ; soient enfin CCCC les masses égales aux autres en nombre, en grandeur, et égales aux B en vitesse, mais qui partent de l’extrémité. Le premier B est bien, en effet, au bout en même temps que le premier C, puisque le mouvement des uns et des autres est parallèle. Les C ont bien aussi dépassé tous les A ; mais les B ne sont qu’à la moitié. Donc, suivant Zénon, le temps n’est aussi que la moitié, puisque de part et d’autre c’est parfaitement égal. Mais il arrive que les B ont, en même temps, dépassé tous les C ; car le premier C et le premier B sont en même temps aux extrémités contraires, le temps pour chacun des B étant tout à fait égal à ce qu’il est pour passer _ chacun des A, si l’on en croit ce que dit Zénon, parce que tous deux arrivent dans un même temps à dépasser les A.
Telle est la théorie de Zénon ; mais elle pèche ainsi que nous l’avons dit.
Quant à la nôtre, elle ne conduit à aucune impossibilité par rapport au changement qui a lieu dans la contradiction. Par exemple, si l’on objecte que le corps qui n’est pas blanc, changeant en blanc, n’est, à un instant donné, ni l’un ni l’autre, de telle sorte qu’on ne puisse pas dire qu’il soit blanc, et qu’on ne puisse pas dire davantage qu’il ne soit pas blanc ; je réponds qu’on n’a pas besoin, pour affirmer que le corps est blanc ou qu’il n’est pas blanc, qu’il soit tout entier l’un ou l’autre ; car on dit d’une chose qu’elle est blanche ou qu’elle ne l’est pas sans qu’elle le soit tout entière, et il suffit que la plupart de ses parties, ou les plus importantes le soient. Mais ce n’est pas la même chose de ne pas être dans tel état ou de ne pas y être tout entier. Il en sera de même tout à fait pour l’être et le non-être, et pour toutes les autres oppositions par contradiction ; car il faut nécessairement que la chose soit dans l’un des opposés ; mais elle n’est pas toujours tout entière dans aucun des deux.
D’autre part, pour le cercle, pour la sphère, et en général pour tout ce qui se meut sur soi-même, on prétend bien que les corps seront en repos, attendu que ces corps et leurs parties étant durant quelque temps dans le même lien, il en résulte, par conséquent, qu’ils seront à la fois et en mouvement, et en repos.
Mais d’abord, je réponds que les parties ne sont jamais un seul moment dans le même lieu.
Puis ensuite, on peut même dire que c’est le cercle entier qui change toujours en un autre ; car la circonférence n’est pas la même, selon qu’on la prend du point A, ou du point B, ou du point C, ou de tels autres points, si ce n’est de la même manière que l’homme musicien est aussi homme, parce que sa qualité de musicien n’est qu’accidentelle. Par conséquent, une circonférence change toujours en une autre, et elle n’est jamais en repos. Il en est tout à fait de même aussi pour la sphère, et pour tous les corps qui se meuvent sur eux-mêmes.