Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Mohinder S. Grewal
Global Navigation Satellite Systems, Inertial Navigation, and Integration
Читать книгу Global Navigation Satellite Systems, Inertial Navigation, and Integration - Mohinder S. Grewal - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
159
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Global Navigation Satellite Systems, Inertial Navigation, and Integration
Оглавление
Страница 1
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Global Navigation Satellite Systems, Inertial Navigation, and Integration
Copyright
Страница 9
Preface to the Fourth Edition
Acknowledgments
About the Authors
About the Companion Website
1 Introduction
1.1 Navigation
1.1.1 Navigation‐Related Technologies
1.1.2 Navigation Modes
1.2 GNSS Overview
1.2.1 GPS
1.2.1.1 GPS Orbits
1.2.1.2 Legacy GPS Signals
1.2.1.3 Modernization of GPS
1.2.2 Global Orbiting Navigation Satellite System (GLONASS)
1.2.2.1 GLONASS Orbits
1.2.2.2 GLONASS Signals
1.2.2.3 Modernized GLONASS
1.2.3 Galileo
1.2.3.1 Galileo Navigation Services
1.2.3.2 Galileo Signal Characteristics
E5a–E5b Band
E6 Band
L1/E1 Band
1.2.4 BeiDou
1.2.4.1 BeiDou Satellites
1.2.4.2 Frequency
1.2.5 Regional Satellite Systems
1.2.5.1 QZSS
1.2.5.2 NAVIC
1.3 Inertial Navigation Overview
1.3.1 History
1.3.1.1 Theoretical Foundations
1.3.1.2 Development Challenges: Then and Now
1.3.2 Development Results 1.3.2.1 Inertial Sensors
1.3.2.2 Sensor Attitude Control
1.3.2.3 Initialization
1.3.2.4 Integrating Acceleration and Velocity
1.3.2.5 Accounting for Gravity
1.4 GNSS/INS Integration Overview 1.4.1 The Role of Kalman Filtering
1.4.2 Implementation
Problems
References
Notes
2 Fundamentals of Satellite Navigation Systems 2.1 Chapter Focus
2.2 Satellite Navigation Systems Considerations
2.2.1 Systems Other than GNSS
2.2.2 Comparison Criteria
2.3 Satellite Navigation
2.3.1 GNSS Orbits
2.3.2 Navigation Solution (Two‐Dimensional Example)
2.3.2.1 Symmetric Solution Using Two Transmitters on Land
2.3.2.2 Navigation Solution Procedure
2.3.3 User Solution and Dilution of Precision (DOP)
2.3.4 Example Calculation of DOPs 2.3.4.1 Four Satellites
2.4 Time and GPS 2.4.1 Coordinated Universal Time (UTC) Generation
2.4.2 GPS System Time
2.4.3 Receiver Computation of UTC
2.5 Example: User Position Calculations with No Errors 2.5.1 User Position Calculations
2.5.1.1 Position Calculations
2.5.2 User Velocity Calculations
Problems
References
3 Fundamentals of Inertial Navigation
3.1 Chapter Focus
Scope.
3.2 Terminology
3.3 Inertial Sensor Technologies 3.3.1 Gyroscopes
3.3.1.1 Momentum Wheel Gyroscopes (MWGs)
Bearing Technologies
Whole‐angle Gyroscopes
Rate Gyroscopes
Axial Mass Unbalance Torques
3.3.1.2 Coriolis Vibratory Gyroscopes (CVGs)
Tuning Fork Gyroscopes
MEMS Tuning Fork Gyroscope
Hemispherical Resonator Gyroscopes
3.3.1.3 Optical Gyroscopes (RLGs and FOGs)
3.3.2 Accelerometers
3.3.2.1 Mass‐spring Designs
3.3.2.2 Pendulous Integrating Gyroscopic Accelerometers (PIGA)
3.3.2.3 Electromagnetic
3.3.2.4 Electrostatic
3.3.3 Sensor Errors 3.3.3.1 Additive Output Noise
3.3.3.2 Input–output Errors
3.3.3.3 Error Compensation
3.3.4 Inertial Sensor Assembly (ISA) Calibration
3.3.4.1 ISA Calibration Parameters
Compensation
3.3.4.2 Calibration Parameter Drift
Predicting Incipient System or Sensor Failures
3.3.5 Carouseling and Indexing
3.4 Inertial Navigation Models
3.4.1 Geoid Models
3.4.2 Terrestrial Navigation Coordinates
3.4.3 Earth Rotation Model
3.4.4 Gravity Models
3.4.4.1 Gravitational Potential
3.4.4.2 Gravitational Acceleration
3.4.4.3 Equipotential Surfaces
WGS84 Ellipsoid
Geoid Models
3.4.4.4 Longitude and Latitude Rates
Meridional Radius of Curvature
Geodetic Latitude Rate
Transverse Radius of Curvature
Longitude Rate
WGS84 Reference Surface Curvatures
3.4.5 Attitude Models
3.4.5.1 Coordinate Transformation Matrices and Rotation Vectors
3.4.5.2 Attitude Dynamics
3.5 Initializing The Navigation Solution 3.5.1 Initialization from an Earth‐fixed Stationary State 3.5.1.1 Accelerometer Recalibration
3.5.1.2 Initializing Position and Velocity
3.5.1.3 Initializing ISA Attitude
3.5.1.4 Gyrocompass Alignment Accuracy
Accuracy
3.5.2 Initialization on the Move 3.5.2.1 Transfer Alignment
3.5.2.2 Initializing Using GNSS
3.6 Propagating The Navigation Solution 3.6.1 Attitude Propagation
3.6.1.1 Strapdown Attitude Propagation
Strapdown Attitude Problems
Coning Motion
Rotation Vector Implementation
Bortz Model for Attitude Dynamics
3.6.1.2 Quaternion Implementation
Converting Incremental Rotations to Incremental Quaternions
3.6.1.3 Direction Cosines Implementation
Quaternions to Direction Cosines Matrices
Strapdown with Whole‐angle Gyroscopes
3.6.1.4 MATLAB® Implementations
3.6.1.5 Gimbal Attitude Implementations
Vehicle Attitude Determination
ISA Attitude Control
3.6.2 Position and Velocity Propagation 3.6.2.1 Vertical Channel Instability
3.6.2.2 Strapdown Navigation Propagation
3.6.2.3 Gimbaled Navigation Propagation
3.7 Testing and Evaluation
3.7.1 Laboratory Testing
3.7.2 Field Testing
3.7.3 Performance Qualification Testing
3.7.3.1 CEP and Nautical Miles
3.7.3.2 Free Inertial Performance
Free Inertial Error Heuristics
CEP Rates
INS Performance Categories
Comparable Sensor Performance Ranges
CEP versus RMS
3.8 Summary
3.8.1 Further Reading
Problems
References
Notes
{buyButton}
Подняться наверх