Читать книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов - Страница 48
References
Оглавление1 1 Ahmad, S., Ahmad, M., Manzoor, K. et al. (2019). A review on latest innovations in natural gums based hydrogels: preparations & applications. International Journal of Biological Macromolecules 136: 870–890.
2 2 Alizadeh‐Sani, M., Ehsani, A., Kia, E.M., and Khezerlou, A. (2019). Microbial gums: introducing a novel functional component of edible coatings and packaging. Applied Microbiology and Biotechnology 103 (17): 6853–6866.
3 3 Kaur, V., Bera, M.B., Panesar, P.S. et al. (2014). Welan gum: microbial production, characterization, and applications. International Journal of Biological Macromolecules 65: 454–461.
4 4 Park, Y.W., Oglesby, J., Hayek, S.A. et al. (2019). Impact of Different Gums on Textural and Microbial Properties of Goat Milk Yogurts during Refrigerated Storage. Food 8 (5): 169.
5 5 Prajapati, V.D., Jani, G.K., and Khanda, S.M. (2013). Pullulan: an exopolysaccharide and its various applications. Carbohydrate Polymers 95 (1): 540–549.
6 6 Mcintosh, M., Stone, B.A., and Stanisich, V.A. (2005). Curdlan and other bacterial (1→ 3)‐β‐D‐glucans. Applied Microbiology and Biotechnology 68 (2): 163–173.
7 7 Mozzi, F., Vaningelgem, F., Hébert, E.M. et al. (2006). Diversity of heteropolysaccharide‐producing lactic acid bacterium strains and their biopolymers. Applied and Environmental Microbiology 72 (6): 4431–4435.
8 8 Baruah, R., Das, D., and Goyal, A. (2016). Heteropolysaccharides from lactic acid bacteria: current trends and applications. Journal of Probiotics and Health 4 (141): 2.
9 9 Shanmugam, M. and Abirami, R.G. (2019). Microbial polysaccharides‐chemistry and applications. Journal of Biologically Active Products from Nature 9 (1): 73–78.
10 10 Flickinger, M.C. and Drew, S.W. (1999). Encyclopedia of Bioprocess Technology. Wiley.
11 11 Rosalam, S. and England, R. (2006). Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme and Microbial Technology 39 (2): 197–207.
12 12 Park, J.K. and Khan, T. (2009). Other microbial polysaccharides: pullulan, scleroglucan, elsinan, levan, alternant, dextran. In: Handbook of Hydrocolloids (eds. G.O. Phillips and P.A. Williams), 592–614. Woodhead Publishing.
13 13 Yang, S.T., Lo, Y.M., and Min, D.B. (1996). Xanthan Gum Fermentation by Xanthomonas campestris Immobilized in a Novel Centrifugal Fibrous‐Bed Bioreactor. Biotechnology Progress 12 (5): 630–637.
14 14 Becker, A., Katzen, F., Pühler, A., and Ielpi, L. (1998). Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology 50 (2): 145–152.
15 15 Thirumavalavan, K., Manikkadan, T.R., and Dhanasekar, R. (2009). Pullulan production from coconut by‐products by Aureobasidium pullulans. African Journal of Biotechnology 8 (2): 254–258.
16 16 Ai, H., Liu, M., Yu, P. et al. (2015). Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Carbohydrate Polymers 129: 35–43.
17 17 Wei, D.I., Zhang, Y.C., Hua‐Xi, Y.I. et al. (2018). Research methods for structural analysis of lactic acid bacteria induced exopolysaccharides. Chinese Journal of Analytical Chemistry 46 (6): 875–882.
18 18 Ruijssenaars, H.J., Stingele, F., and Hartmans, S. (2000). Biodegradability of food‐associated extracellular polysaccharides. Current Microbiology 40 (3): 194–199.
19 19 Lobo, R.E., Gómez, M.I., de Valdez, G.F., and Torino, M.I. (2019). Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocolloids 96: 625–633.
20 20 Giavasis, I., Harvey, L.M., and McNeil, B. (2000). Gellan gum. Critical Reviews in Biotechnology 20 (3): 177–211.
21 21 Xu, X.Y., Zhu, P., Li, S. et al. (2014). Rhamsan gum production by Sphingomonas sp. CGMCC 6833 using a two‐stage agitation speed control strategy. Biotechnology and Applied Biochemistry 61 (4): 453–458.
22 22 Xu, L., Gong, H., Dong, M., and Li, Y. (2015). Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts. Carbohydrate Polymers 132: 620–629.
23 23 Dailin, D.J., Low, L.Z.M.I., Kumar, K. et al. (2019). Agro‐industrial waste: a potential feedstock for pullulan production. Biosciences, Biotechnology Research Asia 16 (2): 229–250.
24 24 Survase, S.A., Saudagar, P.S., Bajaj, I.B., and Singhal, R.S. (2007). Scleroglucan: fermentative production, downstream processing and applications. Food Technology and Biotechnology 45 (2): 107–118.
25 25 Capek, P., Hlavoňová, E., Matulová, M. et al. (2011). Isolation and characterization of an extracellular glucan produced by Leuconostoc garlicum PR. Carbohydrate Polymers 83 (1): 88–93.
26 26 Baruah, R., Maina, N.H., Katina, K. et al. (2017). Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). International Journal of Food Microbiology 242: 124–131.
27 27 Sworn, G. (2009). Xanthan gum. In: Handbook of hydrocolloids (eds. G.O. Phillips and P.A. Williams), 186–203. Woodhead Publishing.
28 28 Garcıa‐Ochoa, F., Santos, V.E., Casas, J.A., and Gómez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances 18 (7): 549–579.
29 29 Chawla, R.P.G.R. and Patil, G.R. (2010). Soluble dietary fiber. Comprehensive Reviews in Food Science and Food Safety 9 (2): 178–196.
30 30 Sadek, Z.I., El‐Shafei, K., and Murad, H.A. (2006). Utilization of xanthan gum and inulin as prebiotics for lactic acid bacteria. Deutsche Lebensmittel‐Rundschau 102 (3): 109–114.
31 31 Sá‐Correia, I., Fialho, A.M., Videira, P. et al. (2002). Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. Journal of Industrial Microbiology and Biotechnology 29 (4): 170–176.
32 32 Sandford, P.A., Cottrell, I.W., and Pettitt, D.J. (1984). Microbial polysaccharides: new products and their commercial applications. Pure and Applied Chemistry 56 (7): 879–892.
33 33 Khan, T., Park, J.K., and Kwon, J.H. (2007). Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean Journal of Chemical Engineering 24 (5): 816–826.
34 34 Tiwari, S., Patil, R., Dubey, S.K., and Bahadur, P. (2019). Derivatization approaches and applications of pullulan. Advances in Colloid and Interface Science 269: 296–308.
35 35 Leathers, T.D. (2003). Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology 62 (5‐6): 468–473.
36 36 Hong, L., Kim, W.S., Lee, S.M. et al. (2019). Pullulan Nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum Through the Induction of Mild Stress in Probiotics. Frontiers in Microbiology 10: 142.
37 37 Sabra, W., Zeng, A.P., and Deckwer, W.D. (2001). Bacterial alginate: physiology, product quality and process aspects. Applied Microbiology and Biotechnology 56 (3‐4): 315–325.
38 38 Necas, J. and Bartosikova, L. (2013). Carrageenan: a review. Veterinární Medicína 58 (4).
39 39 NithyaBalaSundari, S., Nivedita, V., Chakravarthy, M. et al. (2020). Characterization of microbial polysaccharides and prebiotic enrichment of wheat bread with pullulan. LWT 122: 109002.
40 40 Mohsin, A., Zaman, W.Q., Guo, M. et al. (2020). Xanthan‐Curdlan nexus for synthesizing edible food packaging films. International Journal of Biological Macromolecules https://doi.org/10.1016/j.ijbiomac.2020.06.008.
41 41 Douglas, T.E., Łapa, A., Samal, S.K. et al. (2017). Enzymatic, urease‐mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium‐enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Journal of Tissue Engineering and Regenerative Medicine 11 (12): 3556–3566.
42 42 Duan, Y., Li, K., Wang, H. et al. (2020). Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydrate Polymers 238: 116195.
43 43 Martin‐Piñero, M.J., García, M.C., Santos, J. et al. (2020). Characterization of novel nanoemulsions, with improved properties, based on rosemary essential oil and biopolymers. Journal of the Science of Food and Agriculture https://doi.org/10.1002/jsfa.10430.
44 44 Wang, Y., Trani, A., Knaapila, A. et al. (2020). The effect of in situ produced dextran on flavour and texture perception of wholegrain sorghum bread. Food Hydrocolloids 106: 105913.
45 45 Sapper, M., Talens, P., and Chiralt, A. (2019). Improving functional properties of cassava starch‐based films by incorporating xanthan, gellan, or pullulan gums. International Journal of Polymer Science 2019 https://doi.org/10.1155/2019/5367164.
46 46 Kuhn, K.R., e Silva, F.G.D., Netto, F.M., and da Cunha, R.L. (2019). Production of whey protein isolate–gellan microbeads for encapsulation and release of flaxseed bioactive compounds. Journal of Food Engineering 247: 104–114.
47 47 Nwodo, U.U., Green, E., and Okoh, A.I. (2012). Bacterial exopolysaccharides: functionality and prospects. International Journal of Molecular Sciences 13 (11): 14002–14015.
48 48 Vuornos, K., Ojansivu, M., Koivisto, J.T. et al. (2019). Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Materials Science and Engineering: C 99: 905–918.
49 49 Malik, N.S., Ahmad, M., Minhas, M.U. et al. (2020). Chitosan/Xanthan Gum based hydrogels as potential carrier for an antiviral drug: fabrication, characterization, and safety evaluation. Frontiers in Chemistry 8: 50. https://doi.org/10.3389/fchem.2020.00050.
50 50 Taheri, A. and Jafari, S.M. (2019). Nanostructures of gums for encapsulation of food ingredients. In: Biopolymer Nanostructures for Food Encapsulation Purposes (ed. S.M. Jafari), 521–578. Academic Press.
51 51 Zhai, X., Li, Z., Shi, J. et al. (2019). A colorimetric hydrogen sulfide sensor based on gellan gum‐silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry 290: 135–143.
52 52 Muhammad, D.R.A., Doost, A.S., Gupta, V. et al. (2020). Stability and functionality of xanthan gum–shellac nanoparticles for the encapsulation of cinnamon bark extract. Food Hydrocolloids 100: 105377.
53 53 Jamwal, S., Ram, B., Ranote, S. et al. (2019). New glucose oxidase‐immobilized stimuli‐responsive dextran nanoparticles for insulin delivery. International Journal of Biological Macromolecules 123: 968–978.